
Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

1 sur 26 28/08/07 7:03

Set up a Web server cluster in 5 easy steps
Get up and running with the Linux Virtual Server and Linux-HA.org's Heartbeat

Level: Intermediate

Eli M. Dow (emdow@us.ibm.com), Software Engineer, IBM　
Frank LeFevre (lefevre@us.ibm.com), Senior Software Engineer, <a
href="http://www.ibm.com/developerWorks">IBM</a> 

22 Aug 2007

Construct a highly available Apache Web server cluster that spans multiple physical or
virtual Linux® servers in 5 easy steps with Linux Virtual Server and Heartbeat v2.

Spreading a workload across multiple processors, coupled with various software recovery techniques,
provides a highly available environment and enhances overall RAS (Reliability, Availability, and
Serviceability) of the environment. Benefits include faster recovery from unplanned outages, as well
as minimal effects of planned outages on the end user.

To get the most out of this article, you should be familiar with Linux and basic networking, and you
should have Apache servers already configured. Our examples are based on standard SUSE Linux
Enterprise Server 10 (SLES10) installations, but savvy users of other distributions should be able to
adapt the methods shown here.

This article illustrates the robust Apache Web server stack with 6 Apache server nodes (though 3
nodes is sufficient for following the steps outlined here) as well as 3 Linux Virtual Server (LVS)
directors. We used 6 Apache server nodes to drive higher workload throughputs during testing and
thereby simulate larger deployments. The architecture presented here should scale to many more
directors and backend Apache servers as your resources permit, but we haven't tried anything larger
ourselves. Figure 1 shows our implementation using the Linux Virtual Server and the linux-ha.org
components.

Figure 1. Linux Virtual Servers and Apache

 
As shown in Figure 1, the external clients send traffic to a single IP address, which may exist on any
of the LVS director machines. The director machines actively monitor the pool of Web servers they
relay work to. 



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

2 sur 26 28/08/07 7:03

New to Linux Virtual Server 
terminology
LVS directors: Linux Virtual Server 
directors are systems that accept
arbitrary incoming traffic and pass it 
on to any number of realservers. 
They then accept the response from
the realservers and pass it back to the 
clients who initiated the request. The
directors need to perform their task 
in a transparent fashion such that
clients never know that realservers 
are doing the actual workload
processing.

LVS directors themselves need the 
ability to float resources 
(specifically, a virtual IP address on
which they listen for incoming 
traffic) between one another in order
to not become a single point of 
failure. LVS directors accomplish
floating IP addresses by leveraging 
the Heartbeat component from LVS.
This allows each configured director 
that is running Heartbeat to ensure 
one, and only one, of the directors
lays claim to the virtual IP address 
servicing incoming requests.

Beyond the ability to float a service 
IP address, the directors need to be 
able to monitor the status of the
realservers that are doing the actual 
workload processing. The directors
must keep a working knowledge of 
what realservers are available for
processing at all times. In order to 
monitor the realservers, the mon
package is used. Read on for details 

Note that the workload progresses from the left side of Figure 1 toward the right. The floating
resource address for this cluster will reside on one of the LVS director instances at any given time.
The service address may be moved manually through a graphical configuration utility, or (more
commonly) it can be self-managing, depending on the state of the LVS directors. Should any director
become ineligible (due to loss of connectivity, software failure, or similar) the service address will be
relocated automatically to an eligible director. 

The floating service address must span two or more discrete hardware instances in order to continue
operation with the loss of one physical machine. With the configuration decisions presented in this
article, each LVS director is able to forward packets to any real Apache Web server regardless of
physical location or proximity to the active director providing the floating service address. This article
shows how each of the LVS directors can actively monitor the Apache servers in order to ensure
requests are sent only to operational back-end servers. 

With this configuration, practitioners have successfully failed entire Linux instances with no
interruption of service to the consumers of the services enabled on the floating service address
(typically http and https Web requests). 

You can duplicate our configuration using an entirely open 
source software stack consisting of Heartbeat technology
components provided by linux-ha.org, and server
monitoring via mon and Apache. As stated, we used SUSE 
Linux Enterprise Server for testing our configuration.

All of the machines used in the LVS scenario reside on the 
same subnet and use the Network Address Translation (NAT)
configuration. Numerous other network topographies are
described at the Linux Virtual Server Web site (see
Resources); we favor NAT for simplicity. For added security,
you should limit traffic across firewalls to only the floating 
IP address that is passed between the LVS directors.

The Linux Virtual Server suite provides a few different 
methods to accomplish a transparent HA back-end
infrastructure. Each method has advantages and
disadvantages. LVS-NAT operates on a director server by 
grabbing incoming packets that are destined for
configuration-specified ports and rewriting the destination
address in the packet header dynamically. The director does 
not process the data content of the packets itself, but rather
relays them on to the realservers. The destination address in
the packets is rewritten to point to a given realserver from
the cluster. The packet is then placed back on the network 
for delivery to the realserver, and the realserver is unaware
that anything has gone on. As far as the realserver is
concerned, it has simply received a request directly from the
outside world. The replies from the realserver are then sent 
back to the director where they are again rewritten to have
the source address of the floating IP address that clients are
pointed at, and are sent along to the original client. 

Using the LVS-NAT approach means the realservers require 
simple TCP/IP functionality. The other modes of LVS
operation, namely LVS-DR and LVS-Tun require more
complex networking concepts. The major benefit behind the 
choice of LVS-NAT is that very little alteration is required to
the configuration of the realservers. In fact, the hardest part
is remembering to set the routing statements properly.



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

3 sur 26 28/08/07 7:03

on configuring Heartbeat and
configuring mon. 

Realservers: These systems are the 
actual Web server instances 
providing the HA service. It is vital
to have more than one realserver 
providing the service you wish to
make HA. In our environment, 6 
realservers are implemented, but
adding more is trivial once the rest 
of the LVS infrastructure is in place.

In this article, the realservers are all 
assumed to be running the Apache 
Web Server, but other services could
just as easily have been implemented 
(in fact, it is trivially easy to enabled
SSH serving as an additional test of 
the methodology presented here).

The realservers used are stock 
Apache Web servers with the notable 
exception that they were configured
to respond as if it were the LVS 
director's floating IP address, or a
virtual hostname corresponding to 
the floating IP address used by the
directors. This is accomplished by 
altering a single line in the Apache
configuration file. 

Step 1: Building realserver images

Begin by making a pool of Linux server instances, each 
running Apache Web server, and ensure that the servers are
working as designed by pointing a Web browser to each of
the realserver's IP addresses. Typically, a standard install will
be configured to listen on port 80 on its own IP address (in 
other words, on a different IP for each realserver).

Next, configure the default Web page on each server to 
display a static page containing the hostname of the machine
serving the page. This ensures that you always know which
machine you are connecting to during testing. 

As a precaution, check that IP forwarding on these systems is 
OFF by issuing the following command:

# cat /proc/sys/net/ipv4/ip_forward

If for any reason you need to disable it, issue this command: 

# echo "0" 
>/proc/sys/net/ipv4/ip_forward

An easy way to ensure that each of your realservers is 
properly listening on the http port (80) is to use an external
system and perform a scan. From some other system with
network connectivity to your server, you can use the nmap 
utility to make sure the server is listening.

Listing 1. Using nmap to make sure the server is listening
                
# nmap -P0 192.168.71.92

Starting nmap 3.70 ( http://www.insecure.org/nmap/ ) at 2006-01-13 16:58 EST
Interesting ports on 192.168.71.92:
(The 1656 ports scanned but not shown below are in state: closed)
PORT    STATE    SERVICE
22/tcp  open     ssh
80/tcp  filtered http
111/tcp open     rpcbind
631/tcp open     ipp

Be aware that some organizations frown on the use of port scanning tools such as nmap: make sure
that your organization approves before using it. 

Next, point your Web browser to each realserver's actual IP address to ensure each is serving the
appropriate page as expected. Once this is completed, go to Step 2.

Step 2: Installing and configuring the LVS directors

Now you are ready to construct the 3 LVS director instances needed. If you are doing a fresh install
of SUSE Linux Enterprise Server 10 for each of the LVS directors, be sure to select the high
availability packages relating to heartbeat, ipvsadm, and mon during the initial installation. If you
have an existing installation, you can always use a package management tool, such as YAST, to add
these packages after your base installation. It is strongly recommended that you add each of the
realservers to the /etc/hosts file. This will ensure there is no DNS-related delay when servicing
incoming requests. 



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

4 sur 26 28/08/07 7:03

At this time, double check that each of the directors are able to perform a timely ping to each of the
realservers: 

Listing 2. Pinging the realservers
                
# ping -c 1 $REAL_SERVER_IP_1

 # ping -c 1 $REAL_SERVER_IP_2

 # ping -c 1 $REAL_SERVER_IP_3

 # ping -c 1 $REAL_SERVER_IP_4

 # ping -c 1 $REAL_SERVER_IP_5

 # ping -c 1 $REAL_SERVER_IP_6
 

Once completed, install ipvsadm, Heartbeat, and mon from the native package management tools on
the server. Recall that Heartbeat will be used for intra-director communication, and mon will be used
by each director to maintain information about the status of each realserver.

Step 3: Installing and configuring Heartbeat on the directors

If you have worked with LVS before, keep in mind that configuring Heartbeat Version 2 on SLES10
is quite a bit different than it was for Heartbeat Version 1 on SLES9. Where Heartbeat Version 1 used
files (haresources, ha.cf, and authkeys) stored in the /etc/ha.d/ directory, Version 2 uses the new,
XML-based Cluster Information Base (CIB). The recommended approach for upgrading is to use the
haresources file to generate the new cib.xml file. The contents of a typical ha.cf file are shown in
Listing 3. 

We took the ha.cf file from a SLES9 system and added the bottom 3 lines (respawn, pingd, and
crm) for Version 2. If you have an existing version 1 configuration, you may opt to do the same. If
you are using these instructions for a new installation, you can copy Listing 3 and modify it to suit
your production environment.

Listing 3. A sample /etc/ha.d/ha.cf config file
                
 # Log to syslog as facility "daemon"
 use_logd on
 logfacility daemon

 # List our cluster members (the realservers)
 node litsha22
 node litsha23
 node litsha21

 # Send one heartbeat each second
 keepalive 3

 # Warn when heartbeats are late
 warntime 5

 # Declare nodes dead after 10 seconds
 deadtime 10

 # Keep resources on their "preferred" hosts - needed for active/active
 #auto_failback on

 # The cluster nodes communicate on their heartbeat lan (.68.*) interfaces
 ucast eth1 192.168.68.201



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

5 sur 26 28/08/07 7:03

 ucast eth1 192.168.68.202
 ucast eth1 192.168.68.203

 # Failover on network failures
 # Make the default gateway on the public interface a node to ping
 # (-m) -> For every connected node, add <integer> to the value set
 #  in the CIB, * Default=1
 # (-d) -> How long to wait for no further changes to occur before
 #  updating the CIB with a changed attribute
 # (-a) -> Name of the node attribute to set,  * Default=pingd
 respawn hacluster /usr/lib/heartbeat/pingd -m 100 -d 5s

 # Ping our router to monitor ethernet connectivity
 ping litrout71_vip

 #Enable version 2 functionality supporting clusters with  > 2 nodes
 crm yes

The respawn directive is used to specify a program to run and monitor while it runs. If this
program exits with anything other than exit code 100, it will be automatically restarted. The first
parameter is the user id to run the program under, and the second parameter is the program to run.
The -m parameter sets the attribute pingd to 100 times the number of ping nodes reachable from the
current machine, and the -d parameter delays 5 seconds before modifying the pingd attribute in the
CIB. The ping directive is given to declare the PingNode to Heartbeat, and the crm directive 
specifies whether Heartbeat should run the 1.x-style cluster manager or 2.x-style cluster manager that
supports more than 2 nodes. 

This file should be identical on all the directors. It is absolutely vital that you set the permissions
appropriately such that the hacluster daemon can read the file. Failure to do so will cause a slew of
warnings in your log files that may be difficult to debug.

For a release 1-style Heartbeat cluster, the haresources file specifies the node name and networking
information (floating IP, associated interface, and broadcast). For us, this file remained unchanged:

litsha21 192.168.71.205/24/eth0/192.168.71.255

This file will be used only to generate the cib.xml file. 

The authkeys file specifies a shared secret allowing directors to communicate with one another. The
shared secret is simply a password that all the heartbeat nodes know and use to communicate with one
another. The secret prevents unwanted parties from trying to influence the heartbeat server nodes.
This file also remained unchanged:

auth 1

1 sha1 ca0e08148801f55794b23461eb4106db

The next few steps show you how to convert the version 1 haresources file to the new version 2
XML-based configuration format (cib.xml). Though it should be possible to simply copy and use the
configuration file in Listing 4 as a starting point, it is strongly suggested that you follow along to
tailor the configuration for your deployment.

To convert file formats to the XML-based CIB (Cluster Information Base) file you will use in
deployment, issue the following command: 

python /usr/lib64/heartbeat/haresources2cib.py
/etc/ha.d/haresources > /var/lib/heartbeat/crm/test.xml

A configuration file similar to the one shown in Listing 4 will be generated and placed in
/var/lib/heartbeat/crm/test.xml.

Listing 4. Sample CIB.xml file
                



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

6 sur 26 28/08/07 7:03

 <cib admin_epoch="0" have_quorum="true" num_peers="3" cib_feature_revision="1.3"

  generated="true" ccm_transition="7" dc_uuid="114f3ad1-f18a-4bec-9f01-7ecc4d820f6c"

  epoch="280" num_updates="5205" cib-last-written="Tue Apr  3 16:03:33 2007">

    <configuration>

      <crm_config>

        <cluster_property_set id="cib-bootstrap-options">

          <attributes>

            <nvpair id="cib-bootstrap-options-symmetric_cluster"

                   name="symmetric_cluster" value="true"/>

            <nvpair id="cib-bootstrap-options-no_quorum_policy"

                   name="no_quorum_policy" value="stop"/>

            <nvpair id="cib-bootstrap-options-default_resource_stickiness"

                   name="default_resource_stickiness" value="0"/>

            <nvpair id="cib-bootstrap-options-stonith_enabled"

                   name="stonith_enabled" value="false"/>

            <nvpair id="cib-bootstrap-options-stop_orphan_resources"

                   name="stop_orphan_resources" value="true"/>

            <nvpair id="cib-bootstrap-options-stop_orphan_actions"

                   name="stop_orphan_actions" value="true"/>

            <nvpair id="cib-bootstrap-options-remove_after_stop"

                   name="remove_after_stop" value="false"/>

            <nvpair id="cib-bootstrap-options-transition_idle_timeout"

                   name="transition_idle_timeout" value="5min"/>

            <nvpair id="cib-bootstrap-options-is_managed_default"

                   name="is_managed_default" value="true"/>

          <attributes>

        <cluster_property_set>

      <crm_config>

      <nodes>

        <node uname="litsha21" type="normal" id="01ca9c3e-8876-4db5-ba33-a25cd46b72b3">

          <instance_attributes id="standby-01ca9c3e-8876-4db5-ba33-a25cd46b72b3">

            <attributes>

              <nvpair name="standby" id="standby-01ca9c3e-8876-4db5-ba33-a25cd46b72b3"

                     value="off"/>

            <attributes>

          <instance_attributes>

        <node>

        <node uname="litsha23" type="normal" id="dc9a784f-3325-4268-93af-96d2ab651eac">

          <instance_attributes id="standby-dc9a784f-3325-4268-93af-96d2ab651eac">



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

7 sur 26 28/08/07 7:03

            <attributes>

              <nvpair name="standby" id="standby-dc9a784f-3325-4268-93af-96d2ab651eac"

                     value="off"/>

            <attributes>

          <instance_attributes>

        <node>

        <node uname="litsha22" type="normal" id="114f3ad1-f18a-4bec-9f01-7ecc4d820f6c">

          <instance_attributes id="standby-114f3ad1-f18a-4bec-9f01-7ecc4d820f6c">

            <attributes>

              <nvpair name="standby" id="standby-114f3ad1-f18a-4bec-9f01-7ecc4d820f6c"

                     value="off"/>

            <attributes>

          <instance_attributes>

        <node>

      <nodes>

      <resources>

        <primitive class="ocf" provider="heartbeat" type="IPaddr" id="IPaddr_1">

          <operations>

            <op id="IPaddr_1_mon" interval="5s" name="monitor" timeout="5s"/>

          <operations>

          <instance_attributes id="IPaddr_1_inst_attr">

            <attributes>

              <nvpair id="IPaddr_1_attr_0" name="ip" value="192.168.71.205"/>

              <nvpair id="IPaddr_1_attr_1" name="netmask" value="24"/>

              <nvpair id="IPaddr_1_attr_2" name="nic" value="eth0"/>

              <nvpair id="IPaddr_1_attr_3" name="broadcast" value="192.168.71.255"/>

            <attributes>

          <instance_attributes>

        <primitive>

      <resources>

      <constraints>

        <rsc_location id="rsc_location_IPaddr_1" rsc="IPaddr_1">

          <rule id="prefered_location_IPaddr_1" score="200">

            <expression attribute="#uname" id="prefered_location_IPaddr_1_expr"

                   operation="eq" value="litsha21"/>

          <rule>

        <rsc_location>

        <rsc_location id="my_resource:connected" rsc="IPaddr_1">

          <rule id="my_resource:connected:rule" score_attribute="pingd">



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

8 sur 26 28/08/07 7:03

            <expression id="my_resource:connected:expr:defined" attribute="pingd"

                   operation="defined"/>

          <rule>

        <rsc_location>

      <constraints>

    <configuration>

  <cib>

Once your configuration file is generated, move test.xml to cib.xml, change the owner to hacluster
and the group to haclient, and then restart the heartbeat process.

Now that the heartbeat configuration is complete, set heartbeat to start at boot time on each of the
directors. To do this, Issue the following command (or equivalent for your distribution) on each
director: 

# chkconfig heartbeat on

Restart each of the LVS directors to ensure the heartbeat service starts properly at boot. By halting the
machine that holds the floating resource IP address first, you can watch as the other LVS Director
images establish quorum, and instantiate the service address on a newly-elected primary node within a
matter of seconds. When you bring the halted director image back online, the machines will
re-establish quorum across all nodes, at which time the floating resource IP may transfer back. The
entire process should take only a few seconds. 

Additionally, at this time you may wish to use the graphical utility for the heartbeat process, hb_gui
(see Figure 2), to manually move the IP address around in the cluster by setting various nodes to the
standby or active state. Retry these steps numerous times, disabling and re-enabling various machines
that are active or inactive. With the choice of configuration policy selected earlier, as long as quorum
can be established and at least one node is eligible, the floating resource IP address will remain
operational. During your testing, you can use simple pings to ensure that no packet loss occurs. When
you have finished experimenting, you should have a strong feel for how robust your configuration is.
Make sure you are comfortable with the HA configuration of your floating resource IP before
continuing on. 

Figure 2. Graphical configuration utility for the heartbeat process, hb_gui



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

9 sur 26 28/08/07 7:03

 
Figure 2 illustrates the graphical console as it appears after login, showing the managed resources and
associated configuration options. Note that you must log into the hb_gui console when you first
launch the application; the credentials used will depend on your deployment.

Notice in Figure 2 how the nodes in the cluster, the litsha2* systems, are each in the running state.
The system labeled litsha21 is the current active node, as indicated by the addition of a resource
displayed immediately below and indented (IPaddr_1).

Also note the selection labeled "No Quorum Policy" to the value "stop". This means that any isolated
node releases resources it would otherwise own. The implication of that decision is that at any given
time, 2 heartbeat nodes must be active to establish quorum (in other words, a voting majority). Even
if a single active, 100% operational node loses connection to its peer systems due to network failure
or if both the inactive peers halt simultaneously, the resource will be voluntarily released.

Step 4: Creating LVS rules with the ipvsadm command

The next step is to take the floating resource IP address and build on it. Because LVS is intended to be
transparent to remote Web browser clients, all Web requests must be funneled through the directors
and passed on to one of the realservers. Then any results need to be relayed back to the director,
which then returns the response to the client who initiated the Web page request.

To accomplish that flow of requests and responses, first configure each of the LVS directors to enable
IP forwarding (thus allowing requests to be passed on to the realservers) by issuing the following
commands: 

# echo "1" >/proc/sys/net/ipv4/ip_forward

# cat /proc/sys/net/ipv4/ip_forward

If all was successful, the second command would return a "1" as output to your terminal. To add this
permanently, add: 

'' IP_FORWARD="yes"



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

10 sur 26 28/08/07 7:03

to /etc/sysconfig/sysctl. 

Next, to tell the directors to relay incoming HTTP requests to the HA floating IP address on to the
realservers, use the ipvsadm command.

First, clear the old ipvsadm tables: 

# /sbin/ipvsadm -C

Before you can configure the new tables, you need to decide what kind of workload distribution you
want the LVS directors to use. On receipt of a connect request from a client, the director assigns a
realserver to the client based on a "schedule," and you will set the scheduler type with the ipvsadm
command. Available schedulers include: 

Round Robin (RR): New incoming connections are assigned to each realserver in turn.
Weighted Round Robin (WRR): RR scheduling with additional weighting factor to
compensate for differences in realserver capabilities such as additional CPUs, more memory,
and so on. 
Least Connected (LC): New connections go to the realserver with the least number of
connections. This is not necessarily the least-busy realserver, but it is a step in that direction.
Weighted Least Connection (WLC): LC with weighting. 

It is a good idea to use RR scheduling for testing, as it is easy to confirm. You may want to add WRR
and LC to your testing routine to confirm that they work as expected. The examples shown here
assume RR scheduling and its variants. 

Next, create a script to enable ipvsadm service forwarding to the realservers, and place a copy on each
LVS director. This script will not be necessary when the later configuration of mon is done to
automatically monitor for active realservers, but it aids in testing the ipvsadm component until then.
Remember to double-check for proper network and http/https connectivity to each of your realservers
before executing this script. 

Listing 5. The HA_CONFIG.sh file
                
 #!/bin/sh

 # The virtual address on the director which acts as a cluster address

 VIRTUAL_CLUSTER_ADDRESS=192.168.71.205

 REAL_SERVER_IP_1=192.168.71.220

 REAL_SERVER_IP_2=192.168.71.150

 REAL_SERVER_IP_3=192.168.71.121

 REAL_SERVER_IP_4=192.168.71.145

 REAL_SERVER_IP_5=192.168.71.185

 REAL_SERVER_IP_6=192.168.71.186

 # set ip_forward ON for vs-nat director (1 on, 0 off).

 cat /proc/sys/net/ipv4/ip_forward

 echo "1" >/proc/sys/net/ipv4/ip_forward

 # director acts as the gw for realservers

 # Turn OFF icmp redirects (1 on, 0 off), if not the realservers might be clever and

 #  not use the director as the gateway!

 echo "0" >/proc/sys/net/ipv4/conf/all/send_redirects

 echo "0" >/proc/sys/net/ipv4/conf/default/send_redirects



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

11 sur 26 28/08/07 7:03

 echo "0" >/proc/sys/net/ipv4/conf/eth0/send_redirects

 # Clear ipvsadm tables (better safe than sorry)

 /sbin/ipvsadm -C

 # We install LVS services with ipvsadm for HTTP and HTTPS connections with RR

 #  scheduling

 /sbin/ipvsadm -A -t $VIRTUAL_CLUSTER_ADDRESS:http -s rr

 /sbin/ipvsadm -A -t $VIRTUAL_CLUSTER_ADDRESS:https -s rr

 # First realserver

 # Forward HTTP to REAL_SERVER_IP_1 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_1:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_1:https -m -w 1

 # Second realserver

 # Forward HTTP to REAL_SERVER_IP_2 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_2:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_2:https -m -w 1

 # Third realserver

 # Forward HTTP to REAL_SERVER_IP_3 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_3:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_3:https -m -w 1

 # Fourth realserver

 # Forward HTTP to REAL_SERVER_IP_4 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_4:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_4:https -m -w 1

 # Fifth realserver

 # Forward HTTP to REAL_SERVER_IP_5 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_5:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_5:https -m -w 1

 # Sixth realserver

 # Forward HTTP to REAL_SERVER_IP_6 using LVS-NAT (-m), with weight=1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:http -r $REAL_SERVER_IP_6:http -m -w 1

 /sbin/ipvsadm -a -t $VIRTUAL_CLUSTER_ADDRESS:https -r $REAL_SERVER_IP_6:https -m -w 1

 # We print the new ipvsadm table for inspection

 echo "NEW IPVSADM TABLE:"

 /sbin/ipvsadm

As you can see in Listing 5, the script simply enables the ipvsadm services, then has virtually identical
stanzas to forward Web and SSL requests to each of the individual realservers. We used the -m option 
to specify NAT, and weight each realserver equally with a weight of 1 (-w 1). The weights specified 
are superfluous when using normal round robin scheduling (as the default weight is always 1). The
option is presented only so that you may deviate to select weighted round robin. To do so change rr



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

12 sur 26 28/08/07 7:03

to wrr on the 2 consecutive lines below the comment about using round robin, and of course do not
forget to adjust the weights accordingly. For more information about the various schedulers, consult
the man page for ipvsadm. 

You have now configured each director to handle incoming Web and SSL requests to the floating
service IP by rewriting them and passing the work on to the realservers in succession. But in order to
get traffic back from the realservers, and do the reverse process before handing the requests back to
the client who made the request, you need to alter a few of the networking settings on the directors.
This is necessary because of the decision to implement LVS directors and realservers in a flat network
topology (that is, all on the same subnet). We need to perform the following steps to force the Apache
response traffic back through the directors rather than answering directly themselves:

echo "0" > /proc/sys/net/ipv4/conf/all/send_redirects
echo "0" > /proc/sys/net/ipv4/conf/default/send_redirects
echo "0" > /proc/sys/net/ipv4/conf/eth0/send_redirects

This was done to prevent the active LVS director from trying to take a TCP/IP shortcut by informing
the realserver and floating service IP to talk directly to one another (since they are on the same
subnet). Normally redirects are useful, as they improve performance by cutting out unnecessary
middlemen in network connections. But in this case, it would have prevented the response traffic
from being rewritten as is necessary for transparency to the client. In fact, if redirects were not
disabled on the LVS director, the traffic being sent from the realserver directly to the client would
appear to the client as an unsolicited network response and would be discarded.

At this point, it is time to set the default route of each of the realservers to point at the service floating
IP address to ensure all responses are passed back to the director for packet rewriting before being
passed back to the client that originated the request.

Once redirects are disabled on the directors, and the realservers are configured to route all traffic
through the floating service IP, you may proceed to test your HA LVS environment. To test the work
done thus far, point a Web browser on a remote client to the floating service address of the LVS
directors. 

For testing in the laboratory, we used a Gecko-based browser (Mozilla), though any browser should
suffice. To ensure the deployment was successful, disable caching in the browser, and click the
refresh button multiple times. With each refresh, you should see that the Web page displayed is one of
the self-identifying pages configured on the realservers. If you are using RR scheduling, you should
observe the page cycling through each of realservers in succession. 

Are you now thinking of ensuring that the LVS configuration starts automatically at boot? Don't do
that just yet! There is one more step needed (Step 5) to perform active monitoring of the realservers
(thus keeping a dynamic list of which Apache nodes are eligible to service work request).

Step 5: Installing and configuring mon on the LVS directors

So far, you have established a highly available service IP address and bound that to the pool of
realserver instances. But you must never trust any of the individual Apache servers to be operational
at any given time. By choosing RR scheduling, if any given realserver becomes disabled, or ceases to
respond to network traffic in a timely fashion, 1/6th of the HTTP requests would be failures!

Thus it is necessary to implement monitoring of the realservers on each of the the LVS directors in
order to dynamically add or remove them from the service pool. Another well-known open source
package called mon is well suited for this task.

The mon solution is commonly used for monitoring LVS realnodes. Mon is relatively easy to
configure, and is very extensible for people familiar with shell scripting. There are essentially three
main steps to get everything working: installation, service monitoring configuration, and alert



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

13 sur 26 28/08/07 7:03

creation. Use your package management tool to handle the installation of mon. When finished with
the installation, you need only to adjust the monitoring configuration, and create some alert scripts.
The alert scripts are triggered when the monitors determine that a realserver has gone offline, or come
back online. 

Note that with heartbeat v2 installations, monitoring of realservers can be accomplished by making all
the realserver services resources. Or, you can use the Heartbeat directord package.

By default, mon comes with several monitor mechanisms ready to be used. We altered sample
configuration file in /etc/mon.cf to make use of the HTTP service. 

In the mon configuration file, ensure the header reflects the proper paths. SLES10 is a 64-bit Linux
image, but the sample configuration as shipped was for the default (31- or 32-bit) locations. The
configuration file sample assumed the alerts and monitors are located /usr/lib, which was incorrect for
our particular installation. The parameters we altered were as follows:

alertdir = /usr/lib64/mon/alert.d
mondir = /usr/lib64/mon/mon.d

As you can see, we simply changed lib to lib64. Such a change may not be necessary for your
distribution. 

The next change to the configuration file was to specify the list of realservers to monitor. This was
done with the following 6 directives: 

Listing 6. Specifying realservers to monitor
                
 hostgroup litstat1 192.168.71.220 # realserver 1

 hostgroup litstat2 192.168.71.150

 hostgroup litstat3 192.168.71.121

 hostgroup litstat4 192.168.71.145

 hostgroup litstat5 192.168.71.185

 hostgroup litstat6 192.168.71.186 # realserver 6
 

If you want to add additional realservers, simply add additional entries here. 

Once you have all of your definitions in place, you need to tell mon how to watch for failure, and
what to do in case of failure. To do this, add the following monitor sections (one for each realserver).
When done, you will need to place both the mon configuration file and the alert on each of the LVS
heartbeat nodes, enabling each heartbeat cluster node to independently monitor all of the realservers.

Listing 7. The /etc/mon/mon.cf file
                
 #

 # global options

 #

 cfbasedir    = /etc/mon

 alertdir     = /usr/lib64/mon/alert.d

 mondir       = /usr/lib64/mon/mon.d

 statedir     = /var/lib/mon

 logdir       = /var/log



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

14 sur 26 28/08/07 7:03

 maxprocs     = 20

 histlength   = 100

 historicfile = mon_history.log

 randstart    = 60s

 #

 # authentication types:

 #   getpwnam      standard Unix passwd, NOT for shadow passwords

 #   shadow        Unix shadow passwords (not implemented)

 #   userfile      "mon" user file

 #

 authtype = getpwnam

 #

 # downtime logging, uncomment to enable

 #  if the server is running, don't forget to send a reset command

 #  when you change this

 #

 #dtlogfile = downtime.log

 dtlogging = yes

 #

 # NB:  hostgroup and watch entries are terminated with a blank line (or

 #  end of file).  Don't forget the blank lines between them or you lose.

 #

 #

 # group definitions (hostnames or IP addresses)

 # example:

 #

 # hostgroup servers www mail pop server4 server5

 #

 # For simplicity we monitor each individual server as if it were a "group"

 #  so we add only the hostname and the ip address of an individual node for each.

 hostgroup litstat1 192.168.71.220

 hostgroup litstat2 192.168.71.150

 hostgroup litstat3 192.168.71.121

 hostgroup litstat4 192.168.71.145

 hostgroup litstat5 192.168.71.185

 hostgroup litstat6 192.168.71.186

 #

 # Now we set identical watch definitions on each of our groups. They could be

 #  customized to treat individual servers differently, but we have made the



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

15 sur 26 28/08/07 7:03

 #  configurations homogeneous here to match our homogeneous LVS configuration.

 #

  watch litstat1

      service http

         description http check servers

         interval 6s

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

  watch litstat2

      service http

         description http check servers

         interval 6s

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

  watch litstat3

      service http

         description http check servers

         interval 6s

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

  watch litstat4

      service http

         description http check servers

         interval 6s



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

16 sur 26 28/08/07 7:03

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

  watch litstat5

      service http

         description http check servers

         interval 6s

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

  watch litstat6

      service http

         description http check servers

         interval 6s

         monitor http.monitor -p 80 -u /index.html

         allow_empty_group

         period wd {Mon-Sun}

             alert dowem.down.alert -h

             upalert dowem.up.alert -h

             alertevery 600s

                 alertafter 1

Listing 7 tells mon to use the http.monitor, which is shipped with mon by default. Additionally, port
80 is specified as the port to use. Listing 7 also provides the specific page to request; you may opt to
transmit a more efficient small segment of html as proof of success rather than a complicated default
html page for your Web server. The alert and upalert lines invoke scripts that must be placed in 
the alertdir specified at the top of the configuration file. The directory is typically something that
is the distribution default, such as "/usr/lib64/mon/alert.d/". The alerts are responsible for telling LVS
to add or remove Apache servers from the eligibility list (by invoking the ipvsadm command as we 
shall see in a moment). When one of the realservers fails the http test, the dowem.down.alert will be
executed by mon with several arguments automatically. Likewise, when the monitors determine that a
realserver has come back online, the mon process executes the dowem.up.alert with the numerous
arguments automatically. Feel free to alter the names of the alert scripts to suit your own deployment.

Save this file, and create the alerts (using simple bash scripting) in the alertdir. Listing 8 shows a bash



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

17 sur 26 28/08/07 7:03

script alert that will be invoked by mon when a real server connection is re-established.

Listing 8. Simple alert: we have connectivity
                
 #! /bin/bash

 #   The h arg is followed by the hostname we are interested in acting on

 #   So we skip ahead to get the -h option since we don't care about the others

 REALSERVER=192.168.71.205

 while [ $1 != "-h" ] ;

 do

         shift

 done

 ADDHOST=$2

 # For the HTTP service

 /sbin/ipvsadm -a -t $REALSERVER:http -r $ADDHOST:http -m -w 1

 # For the HTTPS service

 /sbin/ipvsadm -a -t $REALSERVER:https -r $ADDHOST:https -m -w 1

Listing 9 shows a bash script alert that will be invoked by mon when a real server connection is lost.

Listing 9. Simple alert: we have lost connectivity
                
 #! /bin/bash

 #   The h arg is followed by the hostname we are interested in acting on

 #   So we skip ahead to get the -h option since we dont care about the others

 REALSERVER=192.168.71.205

 while [ $1 != "-h" ] ;

 do

         shift

 done

 BADHOST=$2

 # For the HTTP service

 /sbin/ipvsadm -d -t $REALSERVER:http -r $BADHOST

 # For the HTTPS service

 /sbin/ipvsadm -d -t $REALSERVER:https -r $BADHOST

Both of those scripts use of the ipvsadm command-line tool to dynamically add and remove
realservers from the LVS tables. Note that these scripts are far from perfect. With mon monitoring
only the http port for simple Web requests, the architecture as outlined here is vulnerable to situations
where a given realserver might be operating correctly for http requests but not for SSL requests.
Under those circumstances, we would fail to remove the offending realserver from the list of https
candidates. Of course, this is easily remedied by making more advanced alerts specifically for each
type of Web request in addition to enabling a second https monitor for each realserver in the mon
configuration file. This is left as an exercise for the reader. Note that you are not forced to use bash



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

18 sur 26 28/08/07 7:03

scripts to implement your own alerts or monitors.

To ensure monitoring has been activated, enable and disable the Apache process on each of the
realservers in sequence, observing each of the directors for their reaction to the events. Only when
you have confirmed that each director is properly monitoring each realserver, should you use the
chkconfig command to make sure that the mon process starts automatically at boot. The specific
command used was chkconfig mon on, but this may vary based on your distribution.

With this last piece in place, you have finished the task of constructing a cross-system,
highly-available Web server infrastructure. Of course, you might now opt to do more advanced work.
For instance, you may have noticed that the mon daemon itself is not monitored (the heartbeat project
can monitor mon for you), but with this last step, the basic foundation has been laid.

Troubleshooting

There are many reasons why an active node could stop functioning properly in an HA cluster, either
voluntarily or involuntarily. The node could lose network connectivity to the other nodes, the
heartbeat process could be stopped, there might be any one of a number of environmental
occurrences, and so on. To deliberately fail the active node, you can issue a halt on that node, or set it
to standby mode using the hb_gui (clean take down) command. If you feel inclined to test the
robustness of your environment, you might opt to be a bit more aggressive (yank the plug!).

Indicators and failover

There are two types of log file indicators available to the system administrator responsible for
configuring a Linux HA heartbeat system. The log files vary depending on whether or not a system is
the recipient of the floating resource IP address.

On members of the cluster that did not receive the Floating Resource IP Address: 

Listing 10. Log results for also-rans
                
 litsha21:~ # cat  /var/log/messages

 Jan 16 12:00:20 litsha21 heartbeat: [3057]: WARN: node litsha23: is dead

 Jan 16 12:00:21 litsha21 cib: [3065]: info: mem_handle_event: Got an event

  OC_EV_MS_NOT_PRIMARY from ccm

 Jan 16 12:00:21 litsha21 cib: [3065]: info: mem_handle_event: instance=13, nodes=3,

  new=1, lost=0, n_idx=0, new_idx=3, old_idx=6

 Jan 16 12:00:21 litsha21 crmd: [3069]: info: mem_handle_event: Got an event

  OC_EV_MS_NOT_PRIMARY from ccm

 Jan 16 12:00:21 litsha21 crmd: [3069]: info: mem_handle_event: instance=13, nodes=3,

  new=1, lost=0, n_idx=0, new_idx=3, old_idx=6

 Jan 16 12:00:21 litsha21 crmd: [3069]: info: crmd_ccm_msg_callback:callbacks.c Quorum

  lost after event=NOT PRIMARY (id=13)

 Jan 16 12:00:21 litsha21 heartbeat: [3057]: info: Link litsha23:eth1 dead.

 Jan 16 12:00:38 litsha21 ccm: [3064]: debug: quorum plugin: majority

 Jan 16 12:00:38 litsha21 ccm: [3064]: debug: cluster:linux-ha, member_count=2,

  member_quorum_votes=200



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

19 sur 26 28/08/07 7:03

 Jan 16 12:00:38 litsha21 ccm: [3064]: debug: total_node_count=3,

  total_quorum_votes=300

                    .................. Truncated For Brevity ..................

 Jan 16 12:00:40 litsha21 crmd: [3069]: info: update_dc:utils.c Set DC to litsha21

  (1.0.6)

 Jan 16 12:00:41 litsha21 crmd: [3069]: info: do_state_transition:fsa.c litsha21:

  State transition S_INTEGRATION ->

 S_FINALIZE_JOIN [ input=I_INTEGRATED cause=C_FSA_INTERNAL

  origin=check_join_state ]

 Jan 16 12:00:41 litsha21 crmd: [3069]: info: do_state_transition:fsa.c All 2 cluster

  nodes responded to the join offer.

 Jan 16 12:00:41 litsha21 crmd: [3069]: info: update_attrd:join_dc.c Connecting to

  attrd...

 Jan 16 12:00:41 litsha21 cib: [3065]: info: sync_our_cib:messages.c Syncing CIB to

  all peers

 Jan 16 12:00:41 litsha21 attrd: [3068]: info: attrd_local_callback:attrd.c Sending

  full refresh

                    .................. Truncated For Brevity ..................

 Jan 16 12:00:43 litsha21 pengine: [3112]: info: unpack_nodes:unpack.c Node litsha21

  is in standby-mode

 Jan 16 12:00:43 litsha21 pengine: [3112]: info: determine_online_status:unpack.c Node

  litsha21 is online

 Jan 16 12:00:43 litsha21 pengine: [3112]: info: determine_online_status:unpack.c Node

  litsha22 is online

 Jan 16 12:00:43 litsha21 pengine: [3112]: info: IPaddr_1

         (heartbeat::ocf:IPaddr): Stopped

 Jan 16 12:00:43 litsha21 pengine: [3112]: notice: StartRsc:native.c  litsha22

    Start IPaddr_1

 Jan 16 12:00:43 litsha21 pengine: [3112]: notice: Recurring:native.c litsha22

       IPaddr_1_monitor_5000

 Jan 16 12:00:43 litsha21 pengine: [3112]: notice: stage8:stages.c Created transition

  graph 0.

                    .................. Truncated For Brevity ..................

 Jan 16 12:00:46 litsha21 mgmtd: [3070]: debug: update cib finished

 Jan 16 12:00:46 litsha21 crmd: [3069]: info: do_state_transition:fsa.c litsha21:

  State transition S_TRANSITION_ENGINE ->

  S_IDLE [ input=I_TE_SUCCESS cause=C_IPC_MESSAGE origin=do_msg_route ]

 Jan 16 12:00:46 litsha21 cib: [3118]: info: write_cib_contents:io.c Wrote version

  0.53.593 of the CIB to disk (digest: 83b00c386e8b67c42d033a4141aaef90)



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

20 sur 26 28/08/07 7:03

As you can see from Listing 10, a roll is taken, and sufficient members for quorum are available for
the vote. A vote is taken, and normal operation is resumed with no further action needed.

On the member of the cluster who received the floating resource IP address: 

Listing 11. The log file of the resource holder
                
 litsha22:~ # cat  /var/log/messages

 Jan 16 12:00:06 litsha22 syslog-ng[1276]: STATS: dropped 0

 Jan 16 12:01:51 litsha22 heartbeat: [3892]: WARN: node litsha23: is dead

 Jan 16 12:01:51 litsha22 heartbeat: [3892]: info: Link litsha23:eth1 dead.

 Jan 16 12:01:51 litsha22 cib: [3900]: info: mem_handle_event: Got an event

  OC_EV_MS_NOT_PRIMARY from ccm

 Jan 16 12:01:51 litsha22 cib: [3900]: info: mem_handle_event: instance=13, nodes=3,

  new=3, lost=0, n_idx=0, new_idx=0, old_idx=6

 Jan 16 12:01:51 litsha22 crmd: [3904]: info: mem_handle_event: Got an event

  OC_EV_MS_NOT_PRIMARY from ccm

 Jan 16 12:01:51 litsha22 crmd: [3904]: info: mem_handle_event: instance=13, nodes=3,

  new=3, lost=0, n_idx=0, new_idx=0, old_idx=6

 Jan 16 12:01:51 litsha22 crmd: [3904]: info: crmd_ccm_msg_callback:callbacks.c Quorum

  lost after event=NOT PRIMARY (id=13)

 Jan 16 12:02:09 litsha22 ccm: [3899]: debug: quorum plugin: majority

 Jan 16 12:02:09 litsha22 crmd: [3904]: info: do_election_count_vote:election.c

  Election check: vote from litsha21

 Jan 16 12:02:09 litsha22 ccm: [3899]: debug: cluster:linux-ha, member_count=2,

  member_quorum_votes=200

 Jan 16 12:02:09 litsha22 ccm: [3899]: debug: total_node_count=3,

  total_quorum_votes=300

 Jan 16 12:02:09 litsha22 cib: [3900]: info: mem_handle_event: Got an event

  OC_EV_MS_INVALID from ccm

 Jan 16 12:02:09 litsha22 cib: [3900]: info: mem_handle_event: no mbr_track info

 Jan 16 12:02:09 litsha22 cib: [3900]: info: mem_handle_event: Got an event

  OC_EV_MS_NEW_MEMBERSHIP from ccm

 Jan 16 12:02:09 litsha22 cib: [3900]: info: mem_handle_event: instance=14, nodes=2,

  new=0, lost=1, n_idx=0, new_idx=2, old_idx=5

 Jan 16 12:02:09 litsha22 cib: [3900]: info: cib_ccm_msg_callback:callbacks.c

  LOST: litsha23

 Jan 16 12:02:09 litsha22 cib: [3900]: info: cib_ccm_msg_callback:callbacks.c

  PEER: litsha21

 Jan 16 12:02:09 litsha22 cib: [3900]: info: cib_ccm_msg_callback:callbacks.c



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

21 sur 26 28/08/07 7:03

  PEER: litsha22

                    .................. Truncated For Brevity ..................

 Jan 16 12:02:12 litsha22 crmd: [3904]: info: update_dc:utils.c Set DC to litsha21

  (1.0.6)

 Jan 16 12:02:12 litsha22 crmd: [3904]: info: do_state_transition:fsa.c litsha22:

  State transition S_PENDING -> S_NOT_DC [ input=I_NOT_DC cause=C_HA_MESSAGE

  origin=do_cl_join_finalize_respond ]

 Jan 16 12:02:12 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Update (client:

  3069, call:25): 0.52.585 ->

 0.52.586 (ok)

                    .................. Truncated For Brevity ..................

 Jan 16 12:02:14 litsha22 IPaddr[3998]: INFO: /sbin/ifconfig eth0:0 192.168.71.205

  netmask 255.255.255.0 broadcast 192.168.71.255

 Jan 16 12:02:14 litsha22 IPaddr[3998]: INFO: Sending Gratuitous Arp for

  192.168.71.205 on eth0:0 [eth0]

 Jan 16 12:02:14 litsha22 IPaddr[3998]: INFO: /usr/lib64/heartbeat/send_arp -i 500 -r

  10 -p

 /var/run/heartbeat/rsctmp/send_arp/send_arp-192.168.71.205 eth0 192.168.71.205 auto

  192.168.71.205 ffffffffffff

 Jan 16 12:02:14 litsha22 crmd: [3904]: info: process_lrm_event:lrm.c LRM operation

  (3) start_0 on IPaddr_1 complete

 Jan 16 12:02:14 litsha22 kernel: send_arp uses obsolete (PF_INET,SOCK_PACKET)

 Jan 16 12:02:14 litsha22 kernel: klogd 1.4.1, ---------- state change ----------

 Jan 16 12:02:14 litsha22 kernel: NET: Registered protocol family 17

 Jan 16 12:02:15 litsha22 crmd: [3904]: info: do_lrm_rsc_op:lrm.c Performing op

  monitor on IPaddr_1 (interval=5000ms, key=0:f9d962f0-4ed6-462d-a28d-e27b6532884c)

 Jan 16 12:02:15 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Update (client:

  3904, call:18): 0.53.591 ->

 0.53.592

  (ok)

 Jan 16 12:02:15 litsha22 mgmtd: [3905]: debug: update cib finished
      

As shown in Listing 11, the /var/log/messages file shows this node has acquired the floating resource.
The ifconfig line shows the eth0:0 device being created dynamically to maintain service.

And as you can see from Listing 11, a roll is taken, and sufficient members for quorum are available
for the vote. A vote is taken, followed by the ifconfig commands that are issued to claim the 
floating resource IP address.

As an additional means of indicating when a failure has occurred, a systems programmer may log in
to any of the cluster members and execute the hb_gui command. Through this method, a system
programmer can determine by visual inspection which system has the floating resource.



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

22 sur 26 28/08/07 7:03

Lastly, we would be remiss if we did not illustrate a sample log file from a no-quorum situation. If
any singular node cannot communicate with either of its peers, it has lost quorum (since 2/3 is the
majority in a three-member voting party). In this situation, the node understands that it has lost
quorum, and invokes the no quorum policy handler. Listing 12 shows an example of the log file
from such an event. When quorum is lost, a log entry indicates it. The cluster node showing this log
entry will disown the floating resource. The ifconfig down statement releases it.

Listing 12. Log entry showing loss of quorum
                
 litsha22:~ # cat /var/log/messages

 ....................

 Jan 16 12:06:12 litsha22 ccm: [3899]: debug: quorum plugin: majority

 Jan 16 12:06:12 litsha22 ccm: [3899]: debug: cluster:linux-ha, member_count=1,

  member_quorum_votes=100

 Jan 16 12:06:12 litsha22 ccm: [3899]: debug: total_node_count=3,

  total_quorum_votes=300

                    .................. Truncated For Brevity ..................

 Jan 16 12:06:12 litsha22 crmd: [3904]: info: crmd_ccm_msg_callback:callbacks.c Quorum

  lost after event=INVALID (id=15)

 Jan 16 12:06:12 litsha22 crmd: [3904]: WARN: check_dead_member:ccm.c Our DC node

  (litsha21) left the cluster

                    .................. Truncated For Brevity ..................

 Jan 16 12:06:14 litsha22 IPaddr[5145]: INFO: /sbin/route -n del -host 192.168.71.205

 Jan 16 12:06:15 litsha22 lrmd: [1619]: info: RA output: (IPaddr_1:stop:stderr)

  SIOCDELRT: No such process

 Jan 16 12:06:15 litsha22 IPaddr[5145]: INFO: /sbin/ifconfig eth0:0 192.168.71.205

  down

 Jan 16 12:06:15 litsha22 IPaddr[5145]: INFO: IP Address 192.168.71.205 released

 Jan 16 12:06:15 litsha22 crmd: [3904]: info: process_lrm_event:lrm.c LRM operation

  (6) stop_0 on IPaddr_1 complete

 Jan 16 12:06:15 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Update (client:

  3904, call:32): 0.54.599 ->

 0.54.600 (ok)

 Jan 16 12:06:15 litsha22 mgmtd: [3905]: debug: update cib finished

As you can see from the Listing 12, when quorum is lost for any given node, it relinquishes any
resources as a result of the chosen no quorum policy configuration. The choice of no quorum policy
is up to the systems programmer.

Fail-back actions and messages

One of the more interesting implications of a properly-configured Linux HA system is that the
systems programmer does not need to take any action to re-instantiate a cluster member. Simply
activating the Linux instance is sufficient to let the node rejoin its peers automatically. If you have
configured a primary node (that is, one that is favored to gain the floating resource above all others),



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

23 sur 26 28/08/07 7:03

it will regain the floating resources automatically. Non-favored systems will simply join the eligibility
pool and proceed as normal. 

Adding another Linux instance back into the pool will cause each node to take notice, and if possibly,
re-establish quorum. The floating resources will be re-established on one of the nodes if quorum can
be re-established. 

Listing 13. Quorum is re-established
                
 litsha22:~ # tail -f /var/log/messages

 Jan 16 12:09:02 litsha22 heartbeat: [3892]: info: Heartbeat restart on node litsha21

 Jan 16 12:09:02 litsha22 heartbeat: [3892]: info: Link litsha21:eth1 up.

 Jan 16 12:09:02 litsha22 heartbeat: [3892]: info: Status update for node litsha21:

  status init

 Jan 16 12:09:02 litsha22 heartbeat: [3892]: info: Status update for node litsha21:

  status up

 Jan 16 12:09:22 litsha22 heartbeat: [3892]: debug: get_delnodelist: delnodelist=

 Jan 16 12:09:22 litsha22 heartbeat: [3892]: info: Status update for node litsha21:

  status active

 Jan 16 12:09:22 litsha22 cib: [3900]: info: cib_client_status_callback:callbacks.c

  Status update: Client litsha21/cib now has status [join]

 Jan 16 12:09:23 litsha22 heartbeat: [3892]: WARN: 1 lost packet(s) for [litsha21]

  [36:38]

 Jan 16 12:09:23 litsha22 heartbeat: [3892]: info: No pkts missing from litsha21!

 Jan 16 12:09:23 litsha22 crmd: [3904]: notice:

  crmd_client_status_callback:callbacks.c Status update: Client litsha21/crmd now has

  status [online]

 ....................

 Jan 16 12:09:31 litsha22 crmd: [3904]: info: crmd_ccm_msg_callback:callbacks.c Quorum

  (re)attained after event=NEW MEMBERSHIP (id=16)

 Jan 16 12:09:31 litsha22 crmd: [3904]: info: ccm_event_detail:ccm.c NEW MEMBERSHIP:

  trans=16, nodes=2, new=1, lost=0 n_idx=0, new_idx=2, old_idx=5

 Jan 16 12:09:31 litsha22 crmd: [3904]: info: ccm_event_detail:ccm.c     CURRENT:

  litsha22 [nodeid=1, born=13]

 Jan 16 12:09:31 litsha22 crmd: [3904]: info: ccm_event_detail:ccm.c     CURRENT:

  litsha21 [nodeid=0, born=16]

 Jan 16 12:09:31 litsha22 crmd: [3904]: info: ccm_event_detail:ccm.c     NEW:

      litsha21 [nodeid=0, born=16]

 Jan 16 12:09:31 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Local-only

  Change (client:3904, call: 35):

 0.54.600 (ok)

 Jan 16 12:09:31 litsha22 mgmtd: [3905]: debug: update cib finished



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

24 sur 26 28/08/07 7:03

 ....................

 Jan 16 12:09:34 litsha22 crmd: [3904]: info: update_dc:utils.c Set DC to litsha22

  (1.0.6)

 Jan 16 12:09:35 litsha22 cib: [3900]: info: sync_our_cib:messages.c Syncing CIB to

  litsha21

 Jan 16 12:09:35 litsha22 crmd: [3904]: info: do_state_transition:fsa.c litsha22:

  State transition S_INTEGRATION ->

  S_FINALIZE_JOIN [ input=I_INTEGRATED cause=C_FSA_INTERNAL origin=check_join_state ]

 Jan 16 12:09:35 litsha22 crmd: [3904]: info: do_state_transition:fsa.c All 2 cluster

  nodes responded to the join offer.

 Jan 16 12:09:35 litsha22 attrd: [3903]: info: attrd_local_callback:attrd.c Sending

  full refresh

 Jan 16 12:09:35 litsha22 cib: [3900]: info: sync_our_cib:messages.c Syncing CIB to

  all peers

 .........................

 Jan 16 12:09:37 litsha22 tengine: [5119]: info: send_rsc_command:actions.c Initiating

  action 4: IPaddr_1_start_0 on litsha22

 Jan 16 12:09:37 litsha22 tengine: [5119]: info: send_rsc_command:actions.c Initiating

  action 2: probe_complete on litsha21

 Jan 16 12:09:37 litsha22 crmd: [3904]: info: do_lrm_rsc_op:lrm.c Performing op start

  on IPaddr_1 (interval=0ms,

  key=2:c5131d14-a9d9-400c-a4b1-60d8f5fbbcce)

 Jan 16 12:09:37 litsha22 pengine: [5120]: info: process_pe_message:pengine.c

  Transition 2: PEngine Input stored in: /var/lib/heartbeat/pengine/pe-input-72.bz2

 Jan 16 12:09:37 litsha22 IPaddr[5196]: INFO: /sbin/ifconfig eth0:0 192.168.71.205

  netmask 255.255.255.0 broadcast 192.168.71.255

 Jan 16 12:09:37 litsha22 IPaddr[5196]: INFO: Sending Gratuitous Arp for

  192.168.71.205 on eth0:0 [eth0]

 Jan 16 12:09:37 litsha22 IPaddr[5196]: INFO: /usr/lib64/heartbeat/send_arp -i 500 -r

  10 -p

  /var/run/heartbeat/rsctmp/send_arp/send_arp-192.168.71.205 eth0 192.168.71.205 auto

  192.168.71.205 ffffffffffff

 Jan 16 12:09:37 litsha22 crmd: [3904]: info: process_lrm_event:lrm.c LRM operation

  (7) start_0 on IPaddr_1 complete

 Jan 16 12:09:37 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Update (client:

  3904, call:46): 0.55.607 -> 0.55.608 (ok)

 Jan 16 12:09:37 litsha22 mgmtd: [3905]: debug: update cib finished

 Jan 16 12:09:37 litsha22 tengine: [5119]: info: te_update_diff:callbacks.c Processing

  diff (cib_update): 0.55.607 -> 0.55.608



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

25 sur 26 28/08/07 7:03

Share this...

Digg this story
Post to del.icio.us
Slashdot it!

 Jan 16 12:09:37 litsha22 tengine: [5119]: info: match_graph_event:events.c Action

  IPaddr_1_start_0 (4) confirmed

 Jan 16 12:09:37 litsha22 tengine: [5119]: info: send_rsc_command:actions.c Initiating

  action 5: IPaddr_1_monitor_5000 on litsha22

 Jan 16 12:09:37 litsha22 crmd: [3904]: info: do_lrm_rsc_op:lrm.c Performing op

  monitor on IPaddr_1 (interval=5000ms, key=2:c5131d14-a9d9-400c-a4b1-60d8f5fbbcce)

 Jan 16 12:09:37 litsha22 cib: [5268]: info: write_cib_contents:io.c Wrote version

  0.55.608 of the CIB to disk (digest: 98cb6685c25d14131c49a998dbbd0c35)

 Jan 16 12:09:37 litsha22 crmd: [3904]: info: process_lrm_event:lrm.c LRM operation

  (8) monitor_5000 on IPaddr_1 complete

 Jan 16 12:09:38 litsha22 cib: [3900]: info: cib_diff_notify:notify.c Update (client:

  3904, call:47): 0.55.608 -> 0.55.609 (ok)

 Jan 16 12:09:38 litsha22 mgmtd: [3905]: debug: update cib finished

In Listing 13, you see that quorum has been re-established. When quorum is re-established, a vote is
performed and litsha22 becomes the active node with the floating resource. 

Next steps
High availability is best seen as a series of challenges, and the solution
outlined here describes the first step. From here, there are many ways to 
move forward with your environment: you may choose to install redundant
networking, a cluster file system to support the realservers, or more
advanced middleware that supports clustering directly.

Resources
Learn

Wikipedia's article on basic networking is a good resource for learning about basic computer
topology and networking tasks. Wikipedia has more information about Network Address
Translation (NAT), too. 

Visit the home page of the Apache HTTP server project if you are new to basic Apache 
configuration. The site offers useful documentation and howto information. See also your
distribution-provided Apache man pages for more. 

The Linux Virtual Server (LVS) project provides the LVS technology used in this article,
including ipvsadm. The site contains a wealth of tutorials and other useful documentation,
and provides a mailing list. 

The Linux-HA Web site contains much useful information on high availability, as well as the
Heartbeat component described in this article. 

mon is a framework for monitoring service outages and their recovery—check it out. 

In the developerWorks Linux zone, find more resources for Linux developers, including Linux 



Set up a Web server cluster in 5 easy steps http://www.ibm.com/developerworks/linux/library/l-linux-ha/index...

26 sur 26 28/08/07 7:03

tutorials, as well as our readers' favorite Linux articles and tutorials over the last month. 

Stay current with developerWorks technical events and Webcasts. 

Get products and technologies
Order the SEK for Linux, a two-DVD set containing the latest IBM trial software for Linux
from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®. 

With IBM trial software, available for download directly from developerWorks, build your
next development project on Linux.

Discuss
Get involved in the developerWorks community through our developer blogs, forums,
podcasts, and community topics in our new developerWorks spaces.

About the authors

Eli M. Dow is a software engineer in the IBM Test and Integration Center for Linux in Poughkeepsie, 
NY. He holds a B.S. degree in computer science and psychology and a master's of computer science 
from Clarkson University. He is an alumnus of the Clarkson Open Source Institute. His interests
include the GNOME desktop, human-computer interaction, virtualization, and Linux systems 
programming. He is the coauthor of an IBM Redbook Linux for IBM System z9 and IBM zSeries.

Frank LeFevre is a Senior Software Engineer in the IBM Systems and Technology Group in
Poughkeepsie, NY. He has over 28 years of experience with IBM mainframe hardware and operating
systems. He is currently the Team Leader for the Linux Virtual Server Platform Evaluation Test team.

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in the United States,
other countries, or both. Linux is a trademark of Linus Torvalds in the United States, other countries, or
both. UNIX is a registered trademark of The Open Group in the United States and other countries. Other
company, product, or service names may be trademarks or service marks of others.


