
http://neworder.box.sk/print/16699

1 sur 3 24/08/07 7:58

Setting up your own internal network w/ qemu.
@ Articles -> Networking Aug 20 2007, 15:42 (UTC+0)
bulibuta writes: Setting up your own internal network w/ qemu.

Many times I found myself wanting to test something on a different arch
or look at what a new OS brings (specially the hobbyist ones announced
now and then on http://www.osnews.com OSNews>) or simply test some network configurations w/o
affecting the existing one. So I started looking at virtual emulators
and such.

After some documentation and searching qemu seemed to be the best to
fit my needs and closest to my philosophy. In this article I'll present
a way to quickly build a virtual network environment with http://www.OpenBSD.org OpenBSD> as host.

The first thing to do is, obviously, get qemu. On OpenBSD you can simply
do a ``pkg_add qemu'' and that's that. For other platforms check the
qemu homepage or your local repository.

Next you should get the ISO's for the operating system you intend to
install as guest. (I'll use debian in this case, but any other will have
similar installing steps.)

With your ISO and qemu install you need to create a virtual disk for
your guest OS.

qemu-img create -f qcow debian.hd 4G

Now we have a 4 gigabytes image formated with qemu's own ``filesystem''.
Don't worry about how big you make it. Qemu will allocate space as you
go along and fill it. What you basically do here is set an upper bound
for the image size.

With the image ready the installation process is good to go:

qemu -m 128 -cdrom debian.iso -boot d -monitor stdio debian.hd

This will bring up an instance of qemu that boots from the cdrom image
passed as argument, let's the guest OS have 128 megabytes of RAM and
drops you inside the qemu console. From inside the console you can
change the cdrom image, send key combos etc.

If you don't have a cdrom image but a floppy disk you can do something
pretty much the same except that you load the floppy disk and boot from
it:

qemu -m 128 -floppy floppy.img -boot a -monitor stdio debian.hd

After this command is issued you'll get a window with the install
process of your selected OS. The steps to install it are no different
than the ones of a real install.

Okay. The install process is over, you have a raw OS running as guest,
but how do you upgrade, add patches, install new software etc.? You need
interaction with the outside world. You can load other cdrom images with
the packages you want but that means downloading a hole ISO for a few
actually needed packages. And if you want to test certain applications
that need network access? Well... everything can be easily done with a
bridge, a tap and some nat-ing.

Qemu has a small configuration file that runs every time an instance of
qemu is started. On most systems it can be found under /etc/qemu-ifup.
There are some examples in your /usr/local/share/doc/qemu directory for
it. Mainly in this script the bridge and tap device are initiated.

If you do not know what a bridge or/and a tap device is you can read up
about them
http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
here> and
http://www.openbsd.org/cgi-bin/man.cgi?query=tun&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html here>
(or check your local documentation). The people
at qemu have some nice http://fabrice.bellard.free.fr/qemu/user-doc.html documents> too.

Anyway here is a configuration file that should give you a head start:

#! /bin/sh
set -x

_ETHER=dc0

http://neworder.box.sk/print/16699

2 sur 3 24/08/07 7:58

_BRIDGE=bridge0

Let the environment over-ride this
["$BRIDGE"] || BRIDGE=${_BRIDGE}
["$ETHER"] || ETHER=${_ETHER}

if test `id -u` -ne 0; then
 SUDO=sudo
fi

echo "Initializing $1.."

Set the tun device into layer2 mode
$SUDO ifconfig $1 link0 up

Set up our bridge
$SUDO ifconfig $1 group tun
$SUDO ifconfig $1 10.0.0.1 netmask 255.255.255.0
$SUDO ifconfig $BRIDGE create && {
 # Ony add rules if the bridge creation succeeds; otherwise
 # duplicate rules get loaded each time qemu starts
 # The following two block carp packets from wasting cpu cycles inside the
 # qemu sessions, remove if testing carp inside qemu
 $SUDO brconfig $BRIDGE rule block in on $ETHER dst 33:33:0:0:0:12
 $SUDO brconfig $BRIDGE rule block in on $ETHER dst 01:00:5e:00:00:12
}
Since we can specify ETHER and BRIDGE above, its possible that
this tun interface or this physical interface was setup as part of
a different bridge earlier, and that is never cleaned up, so we have
to cleaup here first before we set it up; a physcal interface cannot
be member to more than one bridge, thankfully, or I never would have
caught this
ifconfig bridge | sed -n '/^bridge[0-9]*/{s/:.*$//;p;}' | while read brif
do
 $SUDO brconfig $brif del $ETHER
 $SUDO brconfig $brif del $1
done
$SUDO brconfig $BRIDGE add $ETHER up
$SUDO brconfig $BRIDGE add $1 up || true

Much of this file was taken from the examples in the share/doc/qemu
directory. I only added the IP and netmask configuration for the tap
device and modified my bridge and network interface device (on Linux
the dc0 will be eth0 or whatever).

That's it. Now we can start qemu with networking support:

qemu -m 128 -monitor stdio -net nic -net tap debian.hd

The nic switch emulates a ne2000 network card (by default) inside of the
guest OS and the tap switch enables the tap interface. Remember to
configure your guest OS with a corresponding netmask and IP (e.g.
255.255.255.0 and 10.0.0.2).

Now you can ping the guest OS (at IP 10.0.0.1) and SSH/SCP stuff to
it. But what if you want actual internet access. Nothing to it, you'll
just have to add some nating to the host for the packets incoming from
your internal qemu network in your pf.conf (iptables for Linux or you're
favorite packet filter).

In OpenBSD a pf.conf would look like this (see my former http://neworder.box.sk/news/14689 article> on
pf):

CONSTANTS

#ethernet interfaces
internal = "tun0"
external = "dc0"

#computers behind

#services running on the server
services = "{ ssh, www, https, ftp }"

icmp_types = "echoreq"

OPTIONS

set block-policy return
set loginterface $external
set skip on lo0

SCRUB

scrub in all

NAT

nat on $external from $internal:network to any -> ($external)

REDIRECTS TO LOCAL MACHINE

http://neworder.box.sk/print/16699

3 sur 3 24/08/07 7:58

FILTER RULES

 block all

 pass in log on $external inet proto tcp from any to $external
 port $services flags S/SA keep state

 pass in log inet proto icmp all icmp-type $icmp_types keep state

 pass in log quick on $internal from $internal:network to any
 keep state
 pass out log quick on $internal from any to $internal:network
 keep state
 pass out log on $external proto tcp all modulate state flags
 S/SA
 pass out log on $external proto { udp, icmp } all keep state

EOF

Now just enable the packet filter and add a default gateway route to
your guest OS and you have internet access from your qemu network.

Remember to check the snapshot options for the qemu images (that way you
can keep a base install for all and add different things to it like
dedicating one for web hosting, one for devel, one for bashing etc.).
Another interesting feature is compressing an image after you added
pretty much all you wanted to it.

That's it. From here you can play on... If you have any questions or
make some interesting things with your config remember to write them
in the comments section.

(c) New Order / http://neworder.box.sk/

