
Masterzen’s Blog
Journey in a software world…

Home About Bio Contact me Software Contributions

The puppet-users or #puppet freenode irc channel is full of questions or
people struggling about the puppet SSL PKI. To my despair, there are
also people wanting to completely get rid of any security.

While I don’t advocate the live happy, live without security motto of some
puppet users (and I really think a corporate firewall is only one layer of
defense among many, not the ultimate one), I hope this blog post will
help them shoot themselves in their foot

I really think SSL or the X509 PKI is simple once you grasped its
underlying concept. If you want to know more about SSL, I really think
everybody should read Eric Rescola’s excellent “SSL and TLS: Designing
and Building Secure Systems“.

I myself had to deal with SSL internals and X509 PKI while I implemented
a java secured network protocol in a previous life, including a
cryptographic library.

Purpose of Puppet SSL PKI

The current puppet security layer has 3 aims:

authenticate any node to the master (so that no rogue node can
get a catalog from your master)

1.

authenticate the master on any node (so that your nodes are not
tricked into getting a catalog from a rogue master).

2.

prevent communication eavesdropping between master and nodes
(so that no rogue users can grab configuration secrets by listening
to your traffic, which is useful in the cloud)

3.

A notion of PKI

PKI means: Public Key Infrastructure. But whats this?

A PKI is a framework of computer security that allows authentication of
individual components based on public key cryptography. The most
known system is the x509 one which is used to protect our current web.

A public key cryptographic system works like this:

every components of the system has a secret key (known as the private key)
and a public key (this one can be shared with other participant of the
system). The public and private keys are usually bound by a cryptographic
algorithm.

authentication of any component is done with a simple process: a component
signs a message with its own private key. The receiver can authenticate the
message (ie know the message comes from the original component) by
validating the signature. To do this, only the public key is needed.

There are different public/private key pair cryptosystem, the most known
ones are RSA, DSA or those based on Elliptic Curve cryptography.

Usually it is not good that all participants of the system must know each
other to communicate. So most of the current PKI system use a
hierarchical validation system, where all the participant in the system
must only know one of the parent in the hierarchy to be able to validate
each others.

X509 PKI

X509 is an ITU-T standard of a PKI. It is the base of the SSL protocol
authentication that puppet use. This standard specifies certificates,
certificate revocation list, authority and so on…

A given X509 certificate contains several information like those:

Serial number (which is unique for a given CA)

Issuer (who created this certificate, in puppet this is the CA)

Subject (who this certificate represents, in puppet this is the node certname
or fqdn)

Validity (valid from, expiration date)

Public key (and what kind of public key algorithm has been used)

Various extensions (usually what this certificate can be used for,…)

You can check RFC1422 for more details.

Puppet SSL explained
Author: masterzen

14
NOV

About

Welcome to Masterzen's Blog! You'll
find here my current and past
thoughts about my work and hobbies,
including but not limited to system
administration, programming,
photography and boardgames.

Categories

Boardgames (1)

MySQL (6)

Photography (2)

Programming (16)
C (2)
crypto (1)
Java (3)
Perl (1)
PHP (1)
Ruby (7)
SQL (1)
Testing (1)

System Administration (29)
Monitoring (4)
Nginx (6)
Puppet (16)
snmp (3)
ssl (1)
War stories (5)
Wordpress (1)
zsh (1)

Uncategorized (2)

Recent Comments

rims and tires on Storeconfigs
(advanced) use cases

Peter Bain on Puppet Camp 2009
debriefing time!

Peter Bain on Storeconfigs
(advanced) use cases

kunde on Nginx upload progress
module v0.7!

mawi on Puppet SSL explained

Tags

bleak house Boardgames daysofwonder disk

dtrace game gdb InnoDB interface Java

jruby linux memory memory leak

mock monitoring MySQL
net-snmp Nginx nginx module

nginx upload progress opennms

patch performance permission PHP

pictures procedure puppet
puppetcamp puppetcamp09

puppetmaster rails Ruby scsi

smallworld snmp sql ssl
storeconfigs storedconfigs

testing unit testing War stories zsh

Interesting Links

Days of Wonder
My GitHub repository
My Smugmug Galleries
Planet MySQL
Planet PHP
Planet Puppet
Puppet

Masterzen's Pictures

masterzen's photo

masterzen's photo

Ticket to Ride World
Championship 2010

masterzen's photo

masterzen's photo

masterzen's photo

masterzen's photo

Posts (RSS)

Comments (RSS)

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

1 sur 9 30/05/11 02:43

The certificate is usually the DER encoding of the ASN.1 representation of
those informations, and is usually stored as PEM for consumption.

A given X509 certificate is signed by what we call a Certificate Authority
(CA for short). A CA is an infrastructure that can sign new certificates.
Anyone sharing the public key of the CA can validate that a given
certificate has been validated by the CA.

Usually X509 certificate embeds a RSA public key with an exponent of
0!100001 (see below). Along with a certificate, you need a private key
(usually also PEM-encoded).

So basically the X509 system works with the following principle: CA are
using their own private keys to sign components certificates, it is the CA
role to sign only trusted component certificates. The trust is usually
established out-of-bound of the signing request.

Then every component in the system knows the CA certificate (ie public
key). If one component gets a message from another component, it
checks the attached message signature with the CA certificate. If that
validates, then the component is authenticated. Of course the component
should also check the certificate validity, if the certificate has been
revoked (from OCSP or a given CRL), and finally that the certificate
subject matches who the component pretends to be (usually this is an
hostname validation against some part of the certificate Subject)

RSA system

Most of X509 certificate are based on the RSA cryptosystem, so let’s see
what it is.

The RSA cryptosystem is a public key pair system that works like this:

Key Generation

To generate a RSA key, we chose two prime number p and q.

We compute n=pq. We call n the modulus.

We compute !(pq) = (p " 1)(q " 1).

We chose e so that e>1 and e<!(pq) (e and !(pq) must be coprime). e
is called the exponent. It usually is 0!10001 because it greatly simplifies
the computations later (and you know what I mean if you already
implemented this).

Finally we compute d=e^-1 mod((p-1)(q-1)). This will be our secret key.
Note that it is not possible to get d from only e (and since p and q are
never kept after the computation this works).

In the end:

e and n form the public key

d is our private key

Encryption

So the usual actors when describing cryptosystems are Alice and Bob.
Let’s use them.

Alice wants to send a message M to Bob. Alice knows Bob’s public key
(e,n). She transform M in a number < n (this is called padding) that we’ll
call m, then she computes: c = m^e . mod(n)

Decryption

When Bob wants to decrypt the message, he computes with his private
key d: m = c^d . mod(n)

Signing message

Now if Alice wants to sign a message to Bob. She first computes a hash of
her message called H, then she computes: s = H^(d mod n). So she used
her own private key. She sends both the message and the signature.

Bob, then gets the message computes H and computes h’ = H^(e mod n)
with Alice’s public key. If h’ = h, then only Alice could have sent it.

Security

What makes this scheme work is the fundamental that finding p and q
from n is a hard problem (understand for big values of n, it would take far
longer than the validity of the message). This operation is called
factorization. Current certificate are numbers containing 2048 bits, which
roughly makes a 617 digits number to factor.

Want to know more?

Then there are a couple of books really worth reading:

masterzen's photo

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

2 sur 9 30/05/11 02:43

Applied Cryptography – Bruce Schneier

Handbook of Applied Cryptography – Alfred Menezes, Paul van
Oorschot, Scott Vanstone

How does this fit in SSL?

So SSL (which BTW means Secure Socket Layer) and now TLS (SSL
successor) is a protocol that aims to provide security of communications
between two peers. It is above the transport protocol (usually TCP/IP) in
the OSI model. It does this by using symmetric encryption and message
authentication code (MAC for short). The standard is (now) described in
RFC5246.

It works by first performing an handshake between peers. Then all the
remaining communications are encrypted and tamperproof.

This handshake contains several phases (some are optional):

Client and server finds the best encryption scheme and MAC from
the common list supported by both the server and the clients (in
fact the server choses).

1.

The server then sends its certificate and any intermediate CA that
the client might need

2.

The server may ask for the client certificate. The client may send
its certificate.

3.

Both peers may validate those certificates (against a common CA,
from the CRL, etc…)

4.

They then generate the session keys. The client generates a
random number, encrypts it with the server public key. Only the
server can decrypt it. From this random number, both peers
generate the symmetric key that will be used for encryption and
decryption.

5.

The client may send a signed message of the previous handshake
message. This way the server can verify the client knows his
private key (this is the client validation). This phase is optional.

6.

After that, each message is encrypted with the generated session keys
using a symmetric cipher, and validated with an agreed on MAC. Usual
symmetric ciphers range from RC4 to AES. A symmetric cipher is used
because those are usually way faster than any asymmetric systems.

Application to Puppet

Puppet defines it’s own Certificate Authority that is usually running on the
master (it is possible to run a CA only server, for instance if you have
more than one master).

This CA can be used to:

generate new certificate for a given client out-of-bound

sign a new node that just sent his Certificate Signing Request

revoke any signed certificate

display certificate fingerprints

What is important to understand is the following:

Every node knows the CA certificate. This allows to check the validity of the
master from a node

The master doesn’t need the node certificate, since it’s sent by the client
when connecting. It just need to make sure the client knows the private key
and this certificate has been signed by the master CA.

It is also important to understand that when your master is running
behind an Apache proxy (for Passenger setups) or Nginx proxy (ie some
mongrel setups):

The proxy is the SSL endpoint. It does all the validation and authentication of
the node.

Traffic between the proxy and the master happens in clear

The master knows the client has been authenticated because the proxy adds
an HTTP header that says so (usually X-Client-Verify for Apache/Passenger).

When running with webrick, webrick runs inside the puppetmaster
process and does all this internally. Webrick tells the master internally if
the node is authenticated or not.

When the master starts for the 1st time, it generates its own CA
certificate and private key, initializes the CRL and generates a special
certificate which I will call the server certificate. This certificate will be the
one used in the SSL/TLS communication as the server certificate that is
later sent to the client. This certificate subject will be the current master
FQDN. If your master is also a client of itself (ie it runs a puppet agent), I
recommend using this certificate as the client certificate.

The more important thing is that this server certificate advertises the

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

3 sur 9 30/05/11 02:43

following extension:

X509v3 Subject Alternative Name:
 DNS:puppet, DNS:$fqdn, DNS:puppet.$domain

What this means is that this certificate will validate if the connection
endpoint using it has any name matching puppet, the current fqdn or
puppet in the current domain.

By default a client tries to connect to the “puppet” host (this can be
changed with –server which I don’t recommend and is usually the source
of most SSL trouble).

If your DNS system is well behaving, the client will connect to
puppet.$domain. If your DNS contains a CNAME for puppet to your real
master fqdn, then when the client will validate the server certificate it will
succeed because it will compare “puppet” to one of those DNS: entries in
the aforementioned certificate extension. BTW, if you need to change this
list, you can use the –certdnsname option (note: this can be done
afterward, but requires to re-generate the server certificate).

The whole client process is the following:

if the client runs for the 1st time, it generates a Certificate Signing
Request and a private key. The former is an x509 certificate that is
self-signed.

1.

the client connects to the master (at this time the client is not
authenticated) and sends its CSR, it will also receives the CA
certificate and the CRL in return.

2.

the master stores locally the CSR3.
the administrator checks the CSR and can eventually sign it (this
process can be automated with autosigning). I strongly suggest
verifying certificate fingerprint at this stage.

4.

the client is then waiting for his signed certificate, which the
master ultimately sends

5.

All next communications will use this client certificate. Both the
master and client will authenticate each others by virtue of sharing
the same CA.

6.

Tips and Tricks

Troubleshooting SSL

Certificate content

First you can check any certificate content with this:

openssl x509 -text -in /var/lib/puppet/ssl/certs/puppet.pem

Certificate: Data:
 Version: 3 (0x2)
 Serial Number: 2 (0x2)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=Puppet CA: master.domain.com
 Validity
 Not Before: Nov 13 14:29:23 2010 GMT
 Not After : Nov 12 14:29:23 2015 GMT
 Subject: CN=server.domain.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:be:11:7d:0e:32:4d:c4:da:40:7d:7a:17:30:2c:
 00:c4:c5:a8:c7:91:31:21:71:50:ef:07:77:79:1a:
 07:d6:57:d4:4d:e0:01:b3:78:73:ec:84:dd:71:30:
 62:cd:e5:26:fd:54:46:da:e3:3b:be:3b:05:9a:87:
 44:9a:5e:b4:41:b7:15:de:20:1d:9d:26:50:44:bc:
 e6:64:67:d1:93:ee:3f:20:a6:86:0e:11:5c:de:b1:
 da:e5:fb:b5:f1:e1:e9:2e:14:39:47:f2:b8:a4:40:
 84:89:18:86:5a:df:3b:68:a4:64:7f:a9:99:93:60:
 29:e8:fe:d5:a3:e0:6e:ba:4b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 Netscape Comment:
 Puppet Ruby/OpenSSL Generated Certificate
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Subject Key Identifier:
 F4:FA:5A:03:EF:D5:0C:C3:B6:A0:35:47:D1:49:98:74:D4:09:B4:A9
 X509v3 Key Usage:
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication, E
 X509v3 Subject Alternative Name:
 DNS:puppet, DNS:puppet.domain.com
 Signature Algorithm: sha1WithRSAEncryption
 70:e3:7c:04:c4:e1:66:07:db:5c:58:d9:64:bb:0a:e7:55:4c:
 93:9d:61:0a:2a:a6:3f:de:aa:98:a9:e5:40:45:40:87:62:78:

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

4 sur 9 30/05/11 02:43

view rawpuppet-ssl.sh

view rawconnect.sh

 d3:af:a7:01:a7:b9:ca:ee:b2:44:ff:02:be:8b:54:aa:65:45:
 0b:94:2a:56:fa:1d:67:fe:cd:52:09:29:89:bc:2f:4f:6b:30:
 cb:de:6a:01:35:43:74:1e:d6:14:2e:f0:43:ac:38:e9:7c:ec:
 2c:e6:b8:50:8c:15:07:2f:72:35:82:7f:ad:9c:3a:4f:a7:5c:
 d6:e8:87:f9:19:20:1f:8f:2e:2e:28:4c:9f:ea:d7:26:5e:c5:
 18:57

This Gist brought to you by GitHub.

Simulate a SSL connection

You can know more information about a SSL error by simulating a client
connection. Log in the trouble node and:

this simulates how a puppet agent will connect

openssl s_client -host puppet -port 8140 -cert /path/to/ssl/certs/node.domain.c

outputs:

CONNECTED(00000004)
depth=1 /CN=Puppet CA: master.domain.com
verify return:1
depth=0 /CN=macbook.local
verify return:1

Certificate chain
 0 s:/CN=macbook.local
 i:/CN=Puppet CA: master.domain.com
 1 s:/CN=Puppet CA: master.domain.com
 i:/CN=Puppet CA: master.domain.com

Server certificate
-----BEGIN CERTIFICATE-----
MIICgjCCAeugAwIBAgIBAjANBgkqhkiG9w0BAQUFADAjMSEwHwYDVQQDDBhQdXBw
ZXQgQ0E6IG1hY2Jvb2subG9jYWwwHhcNMTAxMTEzMTQyOTIzWhcNMTUxMTEyMTQy
OTIzWjAYMRYwFAYDVQQDDA1tYWNib29rLmxvY2FsMIGfMA0GCSqGSIb3DQEBAQUA
A4GNADCBiQKBgQC+EX0OMk3E2kB9ehcwLADExajHkTEhcVDvB3d5GgfWV9RN4AGz
eHPshN1xMGLN5Sb9VEba4zu+OwWah0SaXrRBtxXeIB2dJlBEvOZkZ9GT7j8gpoYO
EVzesdrl+7Xx4ekuFDlH8rikQISJGIZa3ztopGR/qZmTYCno/tWj4G66SwIDAQAB
o4HQMIHNMDgGCWCGSAGG+EIBDQQrFilQdXBwZXQgUnVieS9PcGVuU1NMIEdlbmVy
YXRlZCBDZXJ0aWZpY2F0ZTAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBT0+loD79UM
w7agNUfRSZh01Am0qTALBgNVHQ8EBAMCBaAwJwYDVR0lBCAwHgYIKwYBBQUHAwEG
CCsGAQUFBwMCBggrBgEFBQcDBDAuBgNVHREEJzAlggZwdXBwZXSCDW1hY2Jvb2su
bG9jYWyCDHB1cHBldC5sb2NhbDANBgkqhkiG9w0BAQUFAAOBgQBw43wExOFmB9tc
WNlkuwrnVUyTnWEKKqY/3qqYqeVARUCHYnjTr6cBp7nK7rJE/wK+i1SqZUULlCpW
+h1n/s1SCSmJvC9PazDL3moBNUN0HtYULvBDrDjpfOws5rhQjBUHL3I1gn+tnDpP
p1zW6If5GSAfjy4uKEyf6tcmXsUYVw==
-----END CERTIFICATE-----
subject=/CN=puppet.domain.com
issuer=/CN=Puppet CA: master.domain.com

No client certificate CA names sent

SSL handshake has read 1794 bytes and written 1656 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID: DB29414CCB1E094675238999C8C00AF3173F441030C44A67D773648E83D76F7
 Session-ID-ctx:
 Master-Key: 92430ADC9E52BA22023D5E37DED7D9A274B9E5E461CB46C47F1E9B14BE1956B
 Key-Arg : None
 Start Time: 1289747911
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

This Gist brought to you by GitHub.

Check the last line of the report, it should say “Verify return code: 0 (ok)”
if both the server and client authenticated each others. Check also the
various information bits to see what certificate were sent. In case of
error, you can learn about the failure by looking that the verification error
message.

ssldump

Using ssldump or wireshark you can also learn more about ssl issues. For
this to work, it is usually needed to force the cipher to use a simple cipher
like RC4 (and also ssldump needs to know the private keys if you want it
to decrypt the application data).

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

5 sur 9 30/05/11 02:43

view rawcrl.sh

view rawfingerprint.sh

Some known issues

Also, in case of SSL troubles make sure your master isn’t using a different
$ssldir than what you are thinking. If that happens, it’s possible your
master is using a different dir and has regenerated its CA. If that happens
no one node can connect to it anymore. This can happen if you upgrade a
master from gem when it was installed first with a package (or the
reverse).

If you regenerate a host, but forgot to remove its cert from the CA (with
puppetca –clean), the master will refuse to sign it. If for any reason you
need to fully re-install a given node without changing its fqdn, either use
the previous certificate or clean this node certificate (which will
automatically revoke the certificate for your own security).

Looking to the CRL content:

it is possible to get the content of the CRL:

openssl crl -text -in /var/lib/puppet/ssl/ca/ca_crl.pem

Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /CN=Puppet CA: master.domain.com
 Last Update: Nov 14 15:47:42 2010 GMT
 Next Update: Nov 13 15:47:42 2015 GMT
 CRL extensions:
 X509v3 CRL Number:
 1
Revoked Certificates:
 Serial Number: 03
 Revocation Date: Nov 14 15:47:42 2010 GMT
 CRL entry extensions:
 X509v3 CRL Reason Code:
 Key Compromise
 Signature Algorithm: sha1WithRSAEncryption
 a2:cb:cf:d6:95:34:5d:7e:aa:95:cf:cd:7f:ea:1a:da:b0:f4:
 15:1f:df:03:28:64:b7:e0:a9:2d:53:df:b7:25:05:64:3e:15:
 08:2a:02:6d:42:7f:ad:37:f1:8f:72:66:f5:ed:f0:0b:59:d2:
 9f:16:77:18:eb:dc:dd:2e:f0:c4:ea:80:51:cf:35:43:ed:cd:
 7d:64:c0:43:dc:85:13:0f:5f:e2:88:78:a9:fc:bf:c3:a5:c6:
 e2:0e:8e:9d:95:1e:19:63:03:bb:26:89:9c:52:78:d6:a0:79:
 82:1d:2c:44:15:7d:75:42:52:4e:6a:a8:e5:d7:40:c5:b8:4a:
 24:d2

This Gist brought to you by GitHub.

Notice how the certificate serial number 3 has been revoked.

Fingerprinting

Since puppet 2.6.0, it is possible to fingerprint certificates. If you
manually sign your node, it is important to make sure you are signing the
correct node and not a rogue system trying to pretend it is some genuine
node. To do this you can get the certificate fingerprint of a node by
running puppet agent –fingerprint, and when listing on the master the
various CSR, you can make sure both fingerprint match.

on the node

puppet agent --test --fingerprint
notice: 14:45:FD:59:F2:CC:83:62:4C:4A:D2:2A:37:4F:12:96

on the master

puppetca --list node.domain.com --fingerprint
node.domain.com 14:45:FD:59:F2:CC:83:62:4C:4A:D2:2A:37:4F:12:96

This Gist brought to you by GitHub.

Dirty Trick

Earlier I was saying that when running with a reverse proxy in front of
Puppet, this one is the SSL endpoint and it propagates the authentication
status to Puppet.

I strongly don’t recommend implementing the following. This will
compromise your setup security.

This can be used to severely remove Puppet security for instance you
can:

make so that every nodes are authenticated for the server by always
returning the correct header

make so that nodes are authenticated based on their IP addresses or fqdn

You can even combine this with a mono-certificate deployment. The idea
is that every node share the same certificate. This can be useful when

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

6 sur 9 30/05/11 02:43

RSS feed for comments on this post

TrackBack URI

8 Responses for "Puppet SSL explained"

view rawgenerate.sh

view rawrelaxed-auth.conf

you need to provision tons of short-lived nodes. Just generate on your
master a certificate:

Generate a certificate and private key to be used for a node

puppetca --generate node.domain.com

notice: node.domain.com has a waiting certificate requestnotice: Signed certifi
notice: Removing file Puppet::SSL::CertificateRequest node.domain.com at
notice: Removing file Puppet::SSL::CertificateRequest node.domain.com at

This Gist brought to you by GitHub.

You can then use those generated certificate (which will end up in /var/lib
/puppet/ssl/certs and /var/lib/puppet/private_keys) in a pre-canned
$ssldir, provided you rename it to the local fqdn (or symlink it). Since this
certificate is already signed by the CA, it is valid. The only remaining
issue is that the master will serve the catalog of this certificate certname.
I proposed a patch to fix this, this patch will be part of 2.6.3. In this case
the master will serve the catalog of the given connecting node and not
the connecting certname. Of course you need a relaxed auth.conf:
...
path ~ ^/catalog/([^/]+)$
method find
allow $1
allow node.domain.com
...

This Gist brought to you by GitHub.

Caveat: I didn’t try, but it should work. YMMV
Of course if you follow this and shoot yourself in the foot, I can’t
be held responsible for any reasons, you are warned. Think twice
and maybe thrice before implementing this.

Multiple CA or reusing an existing CA

This goes beyond the object of this blog post, and I must admit I never
tried this. Please refer to: Managing Multiple Certificate Authorities and
 Puppet Scalability

Conclusion

If there is one: security is necessary when dealing with
configuration management. We don’t want any node to trust rogue
masters, we don’t want masters to distribute sensitive configuration data
to rogue nodes. We even don’t want a rogue user sharing the same
network to read the configuration traffic. Now that you fully understand
SSL, and the X509 PKI, I’m sure you’ll be able to design some clever
attacks against a Puppet setup

Share and Enjoy:

Filed under: Puppet, crypto, ssl

Ohad
November 14th, 2010 at 8:04 pm

Very good post – thank you as usual !

1

FRLinux
November 14th, 2010 at 8:11 pm

Very nice, thanks for that

2

Puppet SSL explained http://www.masterzen.fr/2010/11/14/puppet-ssl-explained/

7 sur 9 30/05/11 02:43

