
Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

1 sur 14 10.08.2007 17:49

Since 1994: The Original Monthly Magazine of the Linux Community Search

SUBSCRIBE NOW

Subscribe

New Archive CD

Renew

Customer Service

Magazine

Magazine Archives

Write for Us

Masthead

FAQ

Press Releases

Advertise

Request Media Kit

Editorial Calendar

Online Advertising

General Ad Info

Resources

What Is Linux?

Industry Events

Other Resources

Free eNewsletters

LJ Weekly Update

Off the Shelf

Popular content

Today's:

Why Microsoft Is Going Open

Source

What could you do with fat

fiber?

The Ultimate Distro

$1.88 an issue!*

Home

Database Replication with Slony-I

By Ludovic Marcotte on Thu, 2005-04-28 01:00.

Whether you need multiple instances of your database for high availability,
backup or for a no-downtime migration to a new version, this versatile tool will
keep all of them in sync.

Database management systems have been a crucial component of
infrastructures for many years now. PostgreSQL is an advanced,
object-relational database management system that is frequently used to
provide such services. Although this database management system has
proven to be stable for many years, the two available open-source replication
solutions, rserv and ERServer, had serious limitations and needed
replacement.

Fortunately, such a replacement recently became available. Slony-I is a
trigger-based master to multiple slaves replication system for PostgreSQL
being developed by Jan Wieck. This enterprise-level replication solution works
asynchronously and offers all key features required by data centers. Among
the key Slony-I usage scenarios are:

Database replication from the head office to various branches to
reduce bandwidth usage or speed up database requests.

Database replication to offer load balancing in all instances. This can
be particularly useful for report generators or dynamic Web sites.

Database replication to offer high availability of database services.

Hot backup using a standby server or upgrades to a new release of
PostgreSQL.

This article walks you through the steps required to install Slony-I and
replicate a simple database located on the same machine. It also describes
how Slony-I can be combined with high-availability solutions to provide
automatic failover.

Installing Slony-I

To install Slony-I and replicate a simple database, first install PostgreSQL
from source. Slony-I supports PostgreSQL 7.3.2 or higher; 7.4.x and 8.0 need
the location of the PostgreSQL source tree when being compiled. If you prefer
using PostgreSQL packages from your favorite distribution, simply rebuild
them from the package sources and keep the package build location intact so
it can be used when compiling Slony-I. That said, obtain the latest Slony-I
release, which is 1.0.5, compile and install it. To do so, proceed with the
following commands:

LJ is a

proud

supporter of

Strong

Health

Magazine

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

2 sur 14 10.08.2007 17:49

Start your risk-free

subscription today!

*based on a 2 yr U.S. sub

Navigation

by subject

recent posts

news aggregator

In this example, we tell the Slony-I's configure script to look in
/usr/src/redhat/BUILD/postgresql-7.4.5/ for the location of the PostgreSQL
sources, the directory used when building the PostgreSQL 7.4.5 RPMs on
Red Hat Enterprise Linux. The last command compiles Slony-I and installs the
following files:

$postgresql_bindir/slonik: the administration and configuration script
utility of Slony-I. slonik is a simple tool, usually embedded in shell
scripts, used to modify Slony-I replication systems. It supports its own
format-free command language described in detail in the Slonik
Command Summary document.

$postgresql_bindir/slon: the main replication engine. This multithreaded
engine makes use of information from the replication schema to
communicate with other engines, creating the distributed replication
system.

$postgresql_libdir/slony1_funcs.so: the C functions and triggers.

$postgresql_libdir/xxid.so: additional datatype to store transaction IDs
safely.

$postgresql_datadir/slony1_base.sql: replication schema.

$postgresql_datadir/slony1_base.v73.sql.

$postgresql_datadir/slony1_base.v74.sql.

$postgresql_datadir/slony1_funcs.sql: replication functions.

$postgresql_datadir/slony1_funcs.v73.sql.

$postgresql_datadir/slony1_funcs.v74.sql.

$postgresql_datadir/xxid.v73.sql: a script used to load the additional
datatype previously defined.

Generally, $postgresql_bindir points to /usr/bin/, $postgresql_libdir to
/usr/lib/pgsql/ and $postgresql_datadir to /usr/share/pgsql/. Use the
pg_config --configure command to display the parameters used

when PostgreSQL was built to find the various locations for your own
installation. Those files are all that is needed to offer a complete replication
engine for PostgreSQL.

% tar -zxvf slony1-1.0.5.tar.gz
% cd slony1-1.0.5
% ./configure \
--with-pgsourcetree=/usr/src/redhat/BUILD/postgresql-7.4.5
% make install

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

3 sur 14 10.08.2007 17:49

Figure 1. How the Slony-I replication engines
work for a master with a slave database.

As you can see in Figure 1, Slony-I's main replication engine, slon, makes use
of many threads. The synchronization thread verifies at a configurable interval
if there has been replicable database activity, generating SYNC events if such
activity happens. The local listen thread listens for new configuration events
and modifies the cluster configuration and the in-memory configuration of the
slon process accordingly.

As its name implies, the cleanup thread performs maintenance on the Slony-I
schema, like removing old events or vacuuming the tables. The remote listen
thread connects to the remote node's database to receive events from its
event provider. When it receives events or confirmations, it selects the
corresponding information and feeds the internal message queue of the
remote workers thread. The replication data is combined into groups of
transactions. The remote workers thread, one per remote node, does the
actual data replication, events storing and generation of confirmations. At any
moment, the slave knows exactly what groups of transactions it has
consumed.

Replicating a Small Database

We first create the database we will replicate. This database contains a single
table and sequence. Let's create a user contactuser, the contactdb database
and activate the plpgsql programming language to this newly created
PostgreSQL database by proceeding with the following commands:

Then, we create the sequence and the table in the database we will replicate
and insert some information in the table:

% su - postgres
% createuser --pwprompt contactuser
Enter password for user "contactuser": (specify a
password)
Enter it again:
Shall the new user be allowed to create databases?
(y/ n) y
Shall the new user be allowed to create more new
users? (y/ n) n
% createdb -O contactuser contactdb
% createlang -U postgres -h localhost plpgsql \
contactdb

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

4 sur 14 10.08.2007 17:49

For the sake of simplicity, let's create a second database on the same system
in which we will replicate the information from the contactdb database.
Proceed with the following commands to create the database, add plpgsql
programming language support and import the schema without any data from
the contactdb database:

Once the databases are created, we are ready to create our database cluster
containing a master and a single slave. Create the Slonik cluster_setup.sh
script and execute it. Listing 1 shows the content of the cluster_setup.sh
script.

Listing 1. cluster_setup.sh

% psql -U contactuser contactdb
contactdb=> create sequence contact_seq start with 1;
contactdb=> create table contact (
 cid int4 primary key,
 name varchar(50),
 address varchar(255),
 phonenumber varchar(15)
);
contactdb=> insert into contact (cid, name, address,
phonenumber) values ((select nextval('contact_seq')),
'Joe', '1 Foo Street', '(592) 471-8271');
contactdb=> insert into contact (cid, name, address,
phonenumber) values ((select nextval('contact_seq')),
'Robert', '4 Bar Roard', '(515) 821-3831');
contactdb=> \q

% su - postgres
% createdb -O contactuser contactdb_slave
% createlang -U postgres -h localhost plpgsql \
contactdb_slave
% pg_dump -s -U postgres -h localhost contactdb | \
psql -U postgres -h localhost contactdb_slave

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

5 sur 14 10.08.2007 17:49

The first slonik command (cluster name) of Listing 1 defines the namespace
where all Slony-I-specific functions, procedures, tables and sequences are
defined. In Slony-I, a node is a collection of a database and a slon process,
and a cluster is a collection of nodes, connected using paths between each
other. Then, the connection information for node 1 and 2 is specified, and the
first node is initialized (init cluster). Once completed, the script creates a new
set to replicate, which is essentially a collection containing the public.contact
table and the public.contact_seq sequence. After the creation of the set, the
script adds the contact table to it and the contact_seq sequence. The store
node command is used to initialize the second node (id = 2) and add it to the
cluster (sql_cluster). Once completed, the scripts define how the replication
system of node 2 connects to node 1 and how node 1 connects to node 2.
Finally, the script tells both nodes to listen for events (store listen) for every
other node in the system.

Once the script has been executed, start the slon replication processes. A
slon process is needed on the master and slave nodes. For our example, we
start the two required processes on the same system. The slon processes
must always be running in order for the replication to take place. If for some
reason they must be stopped, simply restarting allows them to continue where
they left off. To start the replication engines, proceed with the following
commands:

#!/bin/sh
CLUSTER=sql_cluster
DB1=contactdb
DB2=contactdb_slave
H1=localhost
H2=localhost
U=postgres
slonik <<_EOF_
cluster name = $CLUSTER;
node 1 admin conninfo = 'dbname=$DB1 host=$H1 user=$U';
node 2 admin conninfo = 'dbname=$DB2 host=$H2 user=$U';
init cluster (id = 1, comment = 'Node 1');
create set (id = 1, origin = 1,
 comment = 'contact table');
set add table (set id = 1, origin = 1, id = 1,
 full qualified name = 'public.contact',
 comment = 'Table contact');
set add sequence (set id = 1, origin = 1, id = 2,
 full qualified name = 'public.contact_seq',
 comment = 'Sequence contact_seq');
store node (id = 2, comment = 'Node 2');
store path (server = 1, client = 2,
 conninfo = 'dbname=$DB1 host=$H1 user=$U');
store path (server = 2, client = 1,
 conninfo = 'dbname=$DB2 host=$H2 user=$U');
store listen (origin = 1, provider = 1, receiver = 2);
store listen (origin = 2, provider = 2, receiver = 1);

% slon sql_cluster "dbname=contactdb user=postgres" &
% slon sql_cluster "dbname=contactdb_slave user=postgres" &

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

6 sur 14 10.08.2007 17:49

Next, we need to subscribe to the newly created set. Subscribing to the set
causes the second node, the subscriber, to start replicating the information of
the contact table and contact_seq sequence from the first node. Listing 2
shows the content of the subscription script.

Listing 2. subscribe.sh

Much like Listing 1, subscribe.sh starts by defining the cluster namespace and
the connection information for the two nodes. Once completed, the subscribe
set command causes the first node to start replicating the set containing a
single table and sequence to the second node using the slon processes.

Once the subscribe.sh script has been executed, connect to the
contactdb_slave database and examine the content of the contact table. At
any moment, you should see that the information was replicated correctly:

Now, connect to the /contactdb/ database and insert a row:

If you examine the content of the contact table of the contactdb_slave
database once more, you will notice that the row was replicated. Now, delete
a row from the /contactdb/ database:

#!/bin/sh
CLUSTER=sql_cluster
DB1=contactdb
DB2=contactdb_slave
H1=localhost
H2=localhost
U=postgres
slonik <<_EOF_
cluster name = $CLUSTER;
node 1 admin conninfo = 'dbname=$DB1 host=$H1 user=$U';
node 2 admin conninfo = 'dbname=$DB2 host=$H2 user=$U';
subscribe set (id = 1, provider = 1, receiver = 2, forward = yes);

% psql -U contactuser contactdb_slave
contactdb_slave=> select * from contact;
 cid | name | address | phonenumber
-----+--------+--------------+----------------
 1 | Joe | 1 Foo Street | (592) 471-8271
 2 | Robert | 4 Bar Roard | (515) 821-3831

% psql -U contact contactdb
contactdb=> begin; insert into contact (cid, name,
 address, phonenumber) values
 ((select nextval('contact_seq')), 'William',
 '81 Zot Street', '(918) 817-6381'); commit;

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

7 sur 14 10.08.2007 17:49

Again, by examining the content of the contact table of the contactdb_slave
database, you will notice that the row was removed from the slave node
correctly.

Instead of comparing the information for contactdb and contactdb_slave
manually, we easily can automate this process with a simple script, as shown
in Listing 3. Such a script could be executed regularly to ensure that all nodes
are in sync, notifying the administrator if that is no longer the case.

Listing 3. compare.sh

Although replicating a database on the same system isn't of much use, this
example shows how easy it is to do. If you want to experiment with a
replication system on nodes located on separate computers, you simply would
modify the DB2, H1 and H2 environment variables from Listing 1 to 3.
Normally, DB2 would be set to the same value as DB1, so an application
always refers to the same database name. The host environment variables
would need to be set to the fully qualified domain name of the two nodes. You
also would need to make sure that the slon processes are running on both
computers. Finally, it is good practice to synchronize the clocks of all nodes
using ntpd or something similar.

Later, if you want to add more tables or sequences to the initial replication set,
you can create a new set and use the merge set slonik command.
Alternatively, you can use the set move table and set move sequence

contactdb=> begin; delete from contact
 where cid = 2; commit;

#!/bin/sh
CLUSTER=sql_cluster
DB1=contactdb
DB2=contactdb_slave
H1=localhost
H2=localhost
U=postgres
echo -n "Comparing the databases..."
psql -U $U -h $H1 $DB1 >dump.tmp.1.$$ <<_EOF_
 select 'contact'::text, cid, name, address,
 phonenumber from contact order by cid;
EOF
psql -U $U -h $H2 $DB2 >dump.tmp.2.$$ <<_EOF_
 select 'contact'::text, cid, name, address,
 phonenumber from contact order by cid;
EOF
if diff dump.tmp.1.$$ dump.tmp.2.$$ >dump.diff ; then
 echo -e "\nSuccess! Databases are identical."
 rm dump.diff
else
 echo -e "\nFAILED - see dump.diff."
fi
rm dump.tmp.?.$$

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

8 sur 14 10.08.2007 17:49

commands to split the set. Refer to the Slonik Command summary for more
information on this.

Failing Over

In case of a failure from the master node, due to an operating system crash or
hardware problem, for example, Slony-I does not provide any automatic
capability to promote a slave node to become a master. This is problematic
because human intervention is required to promote a node, and applications
demanding highly available database services should not depend on this.
Luckily, plenty of solutions are available that can be combined with Slony-I to
offer automatic failover capabilities. The Linux-HA Heartbeat program is one
of them.

Figure 2. Heartbeat switches the IP alias to the
slave node in case the master fails.

Consider Figure 2, which shows a master and slave node connected together
using an Ethernet and serial link. In this configuration, the Heartbeat is used to
monitor the node's availability through those two links. The application makes
use of the database services by connecting to PostgreSQL through an IP
alias, which is activated on the master node by the Heartbeat. If the Heartbeat
detects that the master node has failed, it brings the IP alias up on the slave
node and executes the slonik script to promote the slave as the new master.

The script is relatively simple. Listing 4 shows the content of the script that
would be used to promote a slave node, running on slave.example.com, so it
starts offering all the database services that master.example.com offered.

Listing 4. promote.sh

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

9 sur 14 10.08.2007 17:49

From Listing 4, the failover Slonik command is used to indicate that the node
with id = 1, the node running on master.example.com, has failed, and that the
node with id = 2 will take over all sets from the failed node. The second
command, drop node, is used to remove the node with id = 1 from the
replication system completely. Eventually, you might want to bring back the
failed node in the cluster. To do this, you must configure it as a slave and let
Slony-I replicate any missing information. Eventually, you can proceed with a
switchback to the initial master node by locking the set (lock set), waiting for
all events to complete (wait for event), moving the set to a new origin (move
set) and waiting for a confirmation that the last command has completed.
Please refer to the Slonik Command Summary for more information on those
commands.

Conclusion

Replicating databases using Slony-I is relatively simple. Combined with the
Linux-HA Heartbeat, this allows you to offer high availability of your database
services. Although the combination of Slony-I and Linux HA-Heartbeat is an
attractive solution, it is important to note that this is not a substitute for good
hardware for your database servers.

Even with its small limitations, like not being able to propagate schema
changes or replicate large objects, Slony-I is a great alternative to both rserv
and ERServer and is now, in fact, the preferred solution for replicating
PostgreSQL databases. Slony-II even supports synchronous multimaster
replication and is already on the design table.

To conclude, I would like to thank Jan Wieck, the author of Slony-I, for
reviewing this article.

Resources for this article: www.linuxjournal.com/article/8202.

Ludovic Marcotte (ludovic@sophos.ca) holds a Bachelor's degree in
Computer Science from the University of Montréal. He is currently a software
architect for Inverse, Inc., an IT consulting company located in downtown
Montréal.

Bookmark/Search this post with:
 digg | reddit

» add new comment | email this page | printer friendly version | digg | reddit

| 16915 reads

#!/bin/bash
CLUSTER=sql_cluster
H1=master.example.com
H2=slave.example.com
U=postgres
DB1=contactdb
DB2=contactdb
su - postgres -c slonik <<_EOF_
cluster name = $CLUSTER;
node 1 admin conninfo = 'dbname=$DB1 host=$H1 user=$U';
node 2 admin conninfo = 'dbname=$DB2 host=$H2 user=$U';
failover (id = 1, backup node = 2);
drop node (id = 1, event node = 2);

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

10 sur 14 10.08.2007 17:49

Comment viewing options

Threaded list - expandedThreaded list - expanded Date - newest firstDate - newest first 50 comments per page50 comments per page

Save settings

Select your preferred way to display the comments and click "Save settings"

to activate your changes.

SERVERS ON DIFFERENT MACHINE

Submitted by dilsha (not verified) on Wed, 2007-05-30 03:53.

» reply | email this page

In case of two database server

Submitted by Mahendra (not verified) on Mon, 2007-04-23 07:30.

» reply | email this page

Hi guys!

Submitted by Giacomo Orizzonte (not verified) on Thu, 2007-03-29 11:37.

HI....

nice tutorial

In my case i have both master and slave on different machine so is it

necessary to execute the script files and to start the slon engine on both

the systems?

plz help me

Thanks

In case of two database server. Do I need to run both cluster_setup.sh and

subscribe.sh tobe executed on both database?

Also artical specifies that in node defination host=FQDN. Can we give IP

address in this case?

Thanks

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

11 sur 14 10.08.2007 17:49

» reply | email this page

thanx

Submitted by Somu (not verified) on Thu, 2007-02-08 07:01.

» reply | email this page

Do i Have to install SLONY in the Master and in the Slave

server

Submitted by Icebergdelphi (not verified) on Mon, 2007-01-15 09:08.

exelent tutorial Ludovic!

i try follow all steps, and i thnik all is ok but dont see in my replicating base

any rows from master, i see two process slon (well is two diferent pc's) i

run cluster.sh and suscribe.sh scripts in two pc's, whit out errors. and i see

the mensajes for slon

(i open in console see this --------------------

2007-03-29 12:02:18 CDT CONFIG storeListen: li_origin=2 li_receiver=1

li_provider=2

2007-03-29 12:07:01 CDT DEBUG1 cleanupThread: 0.001 seconds for

cleanupEvent()

2007-03-29 12:07:01 CDT DEBUG1 cleanupThread: 0.004 seconds for

delete logs

)

but dont start the sync process.

do you have any idea?

thanks very much.

The article is well descriptive, and helped a lot for me to setup the

secondary server for postgres

THANX A LOT

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

12 sur 14 10.08.2007 17:49

» reply | email this page

timestamp problem

Submitted by umar (not verified) on Tue, 2006-06-27 01:26.

» reply | email this page

reply timestamp problem

Submitted by irawan (not verified) on Thu, 2006-07-13 21:03.

» reply | email this page

Automated failover Considered Harmful

Submitted by Andrew Hammond (not verified) on Fri, 2005-08-05 08:20.

Hi, i am from Chiapas Mexico, actually i have a Postgre Database installed

in a CENTOS Linux Distro(In my Principal Office), but i need to stablish a 7

Servers with the same database and with CENTOS in every Branch of my

company, my big question is: Do i have to Install SLONY in every Server in

every branch of my company with the same configuration of the Master

database?

I readed Database Replication with Slony-I, but i never saw something

about the slaves configurations.

Tanx

and sorry 4 My English

Hiber Tadeo Moreno (IcebergDelphi)

I've tried cluster_setup.sh above and get this error:

ERROR: invalid input syntax for type

timestamp: "Tue Jun 27 14:06:04.735468 2006

WIT"

I've tried suggestion from

http://gborg.postgresql.org/project/slony1/bugs/bugupdate.php?1300 but

still didn't work. Any help will be appreciated.

Notes:

I change the U variable from postgres to my account with superuser

privilege and add P variable for password. The default postgres user keep

being asked for password. I'm using postgres and slony1 from debian

package.

find this line in postgresql.conf and change

timezone=UTC

or

timezone=GMT

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

13 sur 14 10.08.2007 17:49

» reply | email this page

I followed the exact same ste

Submitted by Steven (not verified) on Thu, 2005-08-04 00:47.

» reply | email this page

It's normal. it's a NOTICE me

Submitted by Anonymous (not verified) on Wed, 2005-08-17 04:50.

» reply | email this page

U rock!!

Submitted by dhenz (not verified) on Thu, 2006-12-14 21:13.

» reply | email this page

idle process

Submitted by toone (not verified) on Tue, 2007-06-12 06:55.

The decision to failover (including accepting the potential loss of committed

transactions) is not usually one you want software making for you.

Typically in the event of a failure, it would make more sense to attempt to

get the failed master up and stumbling along enough to perform a move set

(the controlled, non-lossy alternative to failover). Failover is a last resort

with async replication systems.

Also, it's worth at least mentioning the _excellent_ slony mailing list:

http://gborg.postgresql.org/mailman/listinfo/slony1

I followed the exact same steps but when I was running 'subscribe.sh' I got

the error message below:

:4: NOTICE: subscribeSet:: set 1 has no tables - risk of problems - see bug

1226

:4: NOTICE:

http://gborg.postgresql.org/project/slony1/bugs/bugupdate.php?1226

Please help me solve this. Thanks.

It's normal. it's a NOTICE message, not ERROR message. Everything

work like a charm (like async charm ;D)

I followed your stuff and I got it to work just one time!! u rock

thanx!!

Database Replication with Slony-I | Linux Journal http://www.linuxjournal.com/article/7834

14 sur 14 10.08.2007 17:49

» reply | email this page

Advertise Community Contact Us Privacy Statement Report Problems

Copyright © 1994 - 2007 Linux Journal. All rights reserved.

We are running slony to check for changes every 10 seconds

but we observe that process are overlapping and tends to

become idle thus using up all of 4GB of memory what can we

do?

