
Firewalling with OpenBSD’s PF
packet filter

Peter N. M. Hansteen
peter@bsdly.net

Copyright © 2005 - 2008 by Peter N. M. Hansteen

This document is © Copyright 2005 - 2008, Peter N. M. Hansteen. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The document is a ’work in progress’, based on a manuscript prepared for a lecture at the BLUG (see

http://www.blug.linux.no/) meeting of January 27th, 2005.

I’m interested in comments of all kinds, and you may if you wish add web or other references to html or

pdf versions of the manuscript. If you do, I would like, but can not require, you to send me an email

message that you’ve done it. For communication regarding this document please use the address

<peter@bsdly.net>; whois bsdly.net provides full contact information. For full revision history, see the

HTML version or the SGML source.

Revision History
Revision 0.09655e 13 may 2007
BSDCan 2007 edition
Revision 0.096551e 28 may 2007
typofix. Thanks: Austin Hook. While here, update references
Revision 0.0966e 11 sep 2007
EuroBSDCon 2007 edition
Revision 0.0967e 05 jan 2008
Greytrapping correction + footnote. Thanks: Olli Hauer. The Book of PF is out.

Table of Contents
Before we start ..1
PF? ..3
Packet filter? Firewall?..5
NAT? ...6
PF today ..8
BSD vs Linux - Configuration ..9
Simplest possible setup (OpenBSD) ...10
Simplest possible setup (FreeBSD)...12
Simplest possible setup (NetBSD)...13
First rule set - single machine..14
Slightly stricter ...15
Statistics from pfctl ..17
A simple gateway, NAT if you need it ...19

Gateways and the pitfalls of in, out and on ...19
What is your local network, anyway?...20
Setting up...21

That sad old FTP thing ..25
FTP through NAT: ftp-proxy ..25
FTP, PF and routable addresses: ftpsesame, pftpx and ftp-proxy!27
ftp-proxy, new style ...28

Making your network troubleshooting friendly..................................30
Then, do we let it all through?..30
The easy way out: The buck stops here..31
Letting ping through ...31
Helping traceroute ..32
Path MTU discovery..32

Network hygiene: Blocking, scrubbing and so on...............................34
block-policy ..34
scrub ...34
antispoof ..34
Handling non-routable addresses from elsewhere35

A web server and a mail server on the inside37
Taking care of your own - the inside ..37

iii

Tables make your life easier...40
Logging..42

Taking a peek with tcpdump ..42
Other log tools you may want to look into..43
But there are limits (an anecdote)..44

Keeping an eye on things with pftop..45
Invisible gateway - bridge...46
Directing traffic with ALTQ..48

ALTQ - prioritizing by traffic type..49
So why does this work? ..49

ALTQ - allocation by percentage ..50
ALTQ - handling unwanted traffic ...51

CARP and pfsync...53
Wireless networks made simple ..54

A little IEEE 802.11 background..54
WEP (Wired Equivalent Privacy)..54
WPA (WiFi Protected Access) ..55

Setting up a simple wireless network ..55
An open, yet tightly guarded wireless network with authpf............58
Turning away the brutes...62

expiretable tidies your tables..64
Giving spammers a hard time..66

Remember, you are not alone: blacklisting ..66
List of black and grey, and the sticky tarpit ..66
Setting up spamd...67
Some early highlights of our spamd experience69
Beating’em up some more: spamdb and greytrapping72

Enter greytrapping ..73
Your own traplist..73
Deleting, handling trapped entries ...74
The downside: some people really do not get it75

Conclusions from our spamd experience..76
PF - Haiku ...78
References ..79
Where to find the tutorial on the web ..81

If you enjoyed this: Buy OpenBSD CDs and other items, donate!81

iv

Before we start
This lecture1 will be about firewalls and related functions, starting from a
little theory along with a number of examples of filtering and other network
traffic directing. As in any number of other endeavors, the things I discuss
can be done in more than one way. Under any circumstances I will urge you
to interrupt me when you need to. That is, if you will permit me to use what
I learn from your comments later, either in revised versions of this lecture
or in practice at a later time. But first,

This is not a HOWTO

This document is not intended as a pre-cooked recipe for cutting and pasting.

Just to hammer this in, please repeat after me

The Pledge of the Network Admin

This is my network.

It is mine
or technically my employer’s,
it is my responsibility
and I care for it with all my heart

there are many other networks a lot like mine,

but none are just like it.

I solemnly swear

that I will not mindlessly paste from HOWTOs.

1. This manuscript is a slightly further developed version of a manuscript prepared for a lec-
ture which was announced as (translated from Norwegian): "This lecture is about firewalls and
related functions, with examples from real life with the OpenBSD project’s PF (Packet Filter).
PF offers firewalling, NAT, traffic control and bandwidth management in a single, flexible and
sysadmin friendly system. Peter hopes that the lecture will give you some ideas about how to
control your network traffic the way you want - keeping some things outside your network,
directing traffic to specified hosts or services, and of course, giving spammers a hard time."
People who have offered significant and useful input regarding this manuscript include Eystein
Roll Aarseth, David Snyder, Peter Postma, Henrik Kramshøj, Vegard Engen, Greg Lehey, Ian
Darwin, Daniel Hartmeier, Mark Uemura, Hallvor Engen and probably a few who will remain
lost in my mail archive until I can grep them out of there.
I would like to thank the following organizations for their kind support: The NUUG Founda-
tion for a travel grant which partly financed my AUUG2005 appearance; The AUUG, UKUUG,
SANE, BSDCan, EuroBSDCon and AsiaBSDCon organizations for inviting me to their con-
ferences; and finally the FreeBSD Foundation for sponsoring my trips to BSDCan 2006 and
EuroBSDCon 2006.

1

Before we start

The point is, while the rules and configurations I show you do work, I have tested
them and they are in some way related to what has been put into production, they
may very well be overly simplistic and are almost certain to be at least a little off
and possibly quite wrong for your network.

Please keep in mind that this document is intended to show you a few useful
things and inspire you to achieve good things.

Please strive to understand your network and what you need to do to make it
better.

Please do not paste blindly from this document or any other.

Now, with that out of the way, we can go on to the meat of the matter.

2

PF?
What, then is PF? Let us start by looking briefly at the project’s history to
put things in their proper context.

OpenBSD’s Packet Filter subsystem, which most people refer to simply by
using the abbreviated form ’PF’, was originally written in an effort of
extremely rapid development during the northern hemisphere summer and
autumn months of 2001 by Daniel Hartmeier and a number of OpenBSD
developers, and was launched as a default part of the OpenBSD 3.0 base
system in December of 2001.

The need for a new firewalling software subsystem for OpenBSD arose
when Darren Reed announced to the world that IPFilter, which at that
point had been rather intimately integrated in OpenBSD, was not after all
BSD licensed. In fact quite to the contrary. The license itself was almost a
word by word copy of the BSD license, omitting only the right to make
changes to the code and distribute the result. The OpenBSD version of
IPFilter contained quite a number of changes and customizations, which it
turned out were not allowed according to the license. IPFilter was removed
from the OpenBSD source tree on May 29th, 2001, and for a few weeks
OpenBSD-current did not contain any firewalling software.

Fortunately, in Switzerland Daniel Hartmeier was already doing some
limited experiments involving kernel hacking in the networking code.

His starting point was hooking a small function of his own into the
networking stack, making packets pass through it, and after a while he had
started thinking about filtering. Then the license crisis happened.

IPFilter was pruned from the source tree on May 29th. The first commit of
the PF code happened Sunday, June 24 2001 at 19:48:58 UTC.1

A few months of rather intense activity followed, and the version of PF to be
released with OpenBSD 3.0 contained a rather complete implementation of
packet filtering, including network address translation.

1. It is worth noting that the IPFilter copyright episode spurred the OpenBSD team to per-
form a license audit of the entire source tree and ports in order to avoid similar situations in
the future. A number of potential problems were uncovered and resolved over the months that
followed, removing a number of potetial license pitfalls for everyone involved in free software
development. Theo de Raadt summed up the effort in a message to the openbsd-misc mail-
ing list on February 20th, 2003, available among others from the MARC mailing list archives
(http://marc.info/?l=openbsd-misc&m=104570938124454&w=2).

3

PF?

From the looks of it, Daniel Hartmeier and the other PF developers made
good use of their experience with the IPFilter code. Under any
circumstances Daniel presented a USENIX 2002 paper with performance
tests which show that the OpenBSD 3.1 PF performed equally well as or
better under stress than IPFilter on the same platform or iptables on Linux.

In addition, some tests were run on the original PF from OpenBSD 3.0.
These tests showed mainly that the code had gained in efficiency from
version 3.0 to version 3.1. The article which provides the details is available
from Daniel Hartmeier’s web, see http://www.benzedrine.cx/pf-paper.html.

I have not seen comparable tests performed recently, but in my own
experience and that of others, the PF filtering overhead is pretty much
negligible. As one data point, the machine which gateways between
Datadok’s network and the world is a Pentium III 450MHz with 384MB of
RAM. When I’ve remembered to check, I’ve never seen the machine at less
than 96 percent ’idle’ according to top.

4

Packet filter? Firewall?
By now I have already used some terms and concepts before I’ve bothered to
explain them, and I’ll correct that oversight shortly. PF is a packet filter,
that is, code which inspects network packets at the protocol and port level,
and decides what to do with them. In PF’s case this code for the most part
operates in kernel space, inside the network code.

PF operates in a world which consists of packets, protocols, connections and
ports.

Based on where a packet is coming from or where it’s going, which protocol,
connection or port it is designated for, PF is able to determine where to lead
the packet, or decide if it is to be let through at all.

It’s equally possible to direct network traffic based on packet contents,
usually referred to as application level filtering, but this is not the kind of
thing PF does. We will come back later to some cases where PF will hand off
these kinds of tasks to other software, but first let us deal with some basics.

We’ve already mentioned the firewall concept. One important feature of PF
and similar software, perhaps the most important feature, is that it is able
to identify and block traffic which you do not want to let into your local
network or let out to the world outside. At some point the term ’firewall’
was coined.

While blocking "bad" traffic and denying access can be quite important, I
tend to emphasize the somewhat wider and more general perspective that
the packet filter is a very flexible tool which is extremely useful when you
want to take control of what happens in your network.

Taking control means you get to make informed decisions, and that, in my
opinion, is when the fun part of being a network administrator starts. And
you should be forewarned, staying in control is a recurring theme in this
session.

5

NAT?
One other thing we will be talking about quite a lot are ’inner’ and ’outer’
addresses, ’routable’ and ’non-routable’ adresses. This is, at the heart of
things, not directly related to firewalls or packet filtering, but due to the
way the world works today, we will need to touch on it.

It all comes from the time in the early 1990s when somebody started
calculating the number of computers which would be connected to the
Internet if the commercialization continued and the great unwashed
masses of consumers were to connect at the same time.

At the time the Internet protocols were formulated, computers were usually
big, expensive things which would normally serve a large number of
simultaneous users, each at their own more or less dumb terminal. Under
any circumstances, the only ones allowed to connect were universities and a
number of companies with Pentagon contracts. Essentially 32 bit addresses
of 4 octets would go an extremely long way. It would accommodate literally
millions of machines, even.

Then Internet commercialization happened, and all of a sudden there were
actually millions of small, inexpensive machines wanting to connect at the
same time. This kind of development showed every sign of continuing and
even accelerating. This meant that the smart people who had made the net
work, needed to do another few pieces of work. They did a few things more
or less at the same time. For one, they started working on a solution based
on a larger address space - this has been dubbed IP version 6, or IPv6 for
short - which uses 128 bit addresses. This has been designated as the long
term solution. I thought I’d mention at this point that IPv6 support is built
into OpenBSD by default, and PF has as far as I know always contained
IPv6 support1.

In addition, some sort of temporary solution was needed. Making the world
move to addresses four times the size would take considerable time. The
process is as far as we can see still pretty much in an early stage. They
found a temporary solution, which consists of two parts. One part was a
mechanism to offer the rest of the world ’white lies’ by letting the network
gateways rewrite packet addresses, the other was offered by designating
some address ranges which had not been assigned earlier for use only in

1. But IPv6 adoption is still in the early stages, and as more people are starting to look at the
protocols in earnest, issues are discovered, some with potentially serious security implications
such as the ICMP6 design flaw which generated some controversy in early 2007.

6

NAT?

networks which would not communicate directly with the Internet at large.
This would mean that several different machines at separate locations
could have the same local IP address. But this would not matter because the
address would be translated before the traffic was let out to the net at large.

If traffic with such "non routable" addresses were to hit the Internet at
large, routers seeing the traffic would have a valid reason to refuse the
packets to pass any further.

This is what is called "Network Address Translation", sometimes referred
to as "IP masquerade" or similar. The two RFCs which define the whats and
hows of this are dated 1994 and 1996 respectively 2.

There may be a number of reasons to use the so called "RFC 1918
addresses", but traditionally and historically the main reason has been that
official addresses are either not available or practical.

2. The two documents are RFC 1631, "The IP Network Address Translator (NAT)", dated May
1994 and RFC 1918, "Address Allocation for Private Internets", dated February 1996. See the
chapter called References

7

PF today
At this point, we have covered a bit of background. Some years have passed
since 2001, and PF in its present OpenBSD 4.2 form is a packet filter which
is capable of doing quite a few things, if you want it to.

For one thing, PF classifies packets based on protocol, port, packet type,
source or destination address. With a reasonable degree of certainty it is
also able to classify packets based on source operating system.

And even if NAT is not a necessary part of a packet filter, for practical
reasons it’s nice that the address rewriting logic is handled somewhere
nearby. Consequently, PF contains NAT logic as well.

PF is able - based on various combinations of protocol, port and other data -
to direct traffic to other destinations than those designated by the sender,
for example to a different machine or for further processing by a program
such as a daemon listening at a port, locally or on a different machine.

Before PF was written, OpenBSD already contained the ALTQ code to
handle load balancing and traffic shaping. After a while, altq was
integrated with PF. Mainly for practical reasons.

As a result of this, all those features are available to you via one single,
essentially human readable configuration file, which is usually called
pf.conf, stored in the /etc/ directory.

This is now available as a part of the base system on OpenBSD, on
FreeBSD where PF from version 5.3 is one of three firewalling systems to
be loaded at will, and in NetBSD and DragonFlyBSD. The last two
operating systems I have not had the resources to play much with myself.
Something about having both hardware and time available at the same
time. Anyway all indications are that only very minor details vary between
these systems as far as PF is involved.

8

BSD vs Linux - Configuration
I assume that some of those who read this document are more familiar with
configuring Linux or other systems than with BSD, so I’ll briefly mention a
few points about BSD system and network configuration.

BSD network interfaces are not labeled eth0, eth1 and so on. The interfaces
are assigned names which equal the driver name plus a sequence number,
making 3Com cards using the xl driver appear as xl0, xl1, and so on, while
Some Intel cards are likely to end up as em0, em1, others are supported by
the fxp driver, and so on. There may even be slight variations in which
cards are supported in which drivers across the BSDs.1

For boot-time configuration, the BSDs are generally organized to read the
configuration from /etc/rc.conf, which is read by the /etc/rc script at
startup. OpenBSD recommends using /etc/rc.conf.local for local
customizations, since rc.conf contains the default values, while FreeBSD
uses /etc/defaults/rc.conf to store the default settings, making
/etc/rc.conf the correct place to make changes.

PF is configured by editing the /etc/pf.conf file and by using the pfctl
command line tool. The pfctl application has a large number of options. We
will take a closer look at some of them today.

In case you are wondering, there are web interfaces available for admin
tasks, but they are not parts of the base system. The PF developers are not
hostile to these things, but rather have not seen any graphical interface to
PF configuration which without a doubt is preferable to pf.conf in a text
editor, backed up with pfctl invocations and a few unix tricks.

1. When in doubt, consult the output of the dmesg command, which displays the kernel mes-
sage buffer. Under most circumstances, the kernel’s hardware probing and recognition mes-
sages will be intact in the message buffer for a relatively long time after your system has
finished booting.

9

Simplest possible setup (OpenBSD)
This brings us, finally, to the practical point of actually configuring PF in
the simplest possible setup. We’ll deal with a single machine which will
communicate with a network which may very well be the Internet.

In order to start PF, as previously mentioned, you need to tell the rc system
that you want the service to start. On OpenBSD, this is done in
/etc/rc.conf.local, with the magical line

pf=YES # enable PF

quite simply. In addition, you may if you like specify the file where PF will
find its rules.

pf_rules=/etc/pf.conf # specify which file contains your rules

The default value is the one given here, /etc/pf.conf. At the next startup,
PF will be enabled. You can verify this by looking for the message PF

enabled on the console. The /etc/pf.conf which comes out of a normal
install of OpenBSD, FreeBSD or NetBSD contains a number of useful
suggestions, but they’re all commented out.

Then again, you really do not need to restart your machine in order to
enable PF. You can do this just as easily by using pfctl. We really do not
want to reboot for no good reason, so we type the command

peter@skapet:~$ sudo pfctl -ef /etc/pf.conf

which enables PF and loads your rule set.12. At this point we do not have a
rule set, which means that PF does not actually do anything.

It is probably worth noting that if you reboot your machine at this point,
the rc script on OpenBSD at least will enable a default rule set, which is in
fact loaded before any of the network interfaces are enabled.

This default rule set is designed as a safety measure in case your gateway
boots with an invalid configuration. It lets you log in and clean up

1. As a footnoted aside, I tend to use sudo when I need to do something which requires priv-
ileges. Sudo is in the base system on OpenBSD, and is within easy reach as a port or package
elsewhere. If you have not started using sudo yet, you should. Then you’ll avoid shooting your
own foot simply because you forgot you were root in that terminal window.
2. For convenience if you want it - pfctl is able to handle several operations on a single com-
mand line. You can, for example, enable PF and load the rule set with the command sudo
pfctl -ef /etc/pf.conf, and bunch on several other options if you like.

10

Simplest possible setup (OpenBSD)

whichever syntax error caused your rule set not to load. The default rule set
allows a basic set of services: ssh from anyhere, basic name resolution and
NFS mounts.

Some early versions of PF ports elsewhere appear to have neglected to
bring the default rules with them.

11

Simplest possible setup (FreeBSD)
On FreeBSD it could seem that you need a little more magic in your
/etc/rc.conf, specifically according to the FreeBSD Handbook1

pf_enable="YES" # Enable PF (load module if required)
pf_rules="/etc/pf.conf" # rules definition file for PF
pf_flags="" # additional flags for pfctl startup
pflog_enable="YES" # start pflogd(8)
pflog_logfile="/var/log/pflog" # where pflogd should store the logfile
pflog_flags="" # additional flags for pflogd startup

Fortunately almost all of these are already present as the default settings
in your /etc/defaults/rc.conf, and only

pf_enable="YES" # Enable PF (load module if required)
pflog_enable="YES" # start pflogd(8)

are in fact needed as additions to your /etc/rc.conf in order to enable PF.

On FreeBSD, PF by default is compiled as a kernel loadable module. This
means that you should be able to get started2 right after you have added
those two lines to your configuration with $ sudo kldload pf, followed by
$ sudo pfctl -e to enable PF. Assuming you have put these lines in your
/etc/rc.conf, you can use the PF rc script to enable or disable PF:

$ sudo /etc/rc.d/pf start

to enable PF, or

$ sudo /etc/rc.d/pf stop

to disable the packet filter. The pf rcNG script supports a few other
operations as well. However it is still worth noting that at this point we do
not have a rule set, which means that PF does not actually do anything.

1. There are some differences between the FreeBSD 4.n and 5.n and newer re-
leases with respect to PF. Refer to the FreeBSD Handbook, specifically the PF chapter
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-pf.html) to see which
information applies in your case.
2. Here I use the sudo command, which is an excellent tool when you need to do something
which requires privileges. sudo is not part of the base system on FreeBSD, but is within easy
reach from the ports system as security/sudo. If you have not started using sudo yet, you
should. Then you’ll avoid shooting your own foot simply because you forgot you were root in
that terminal window.

12

Simplest possible setup (NetBSD)
On NetBSD 2.0 and newer PF is available as a loadable kernel module,
installed via packages as pkgsrc/security/pflkm or compiled into a static
kernel configuration. In NetBSD 3.0 onwards, PF is part of the base system.

If you want to enable PF in your kernel configuration (rather than loading
the kernel module), you add these lines to your kernel configuration:

pseudo-device pf # PF packet filter
pseudo-device pflog # PF log interface

In /etc/rc.conf you need the lines

lkm="YES" # do load kernel modules
pf=YES
pflogd=YES

to enable loadable kernel modules, PF and the PF log interface, respectively.

If you installed the module, you load it with NetBSD$ sudo modload
/usr/lkm/pf.o, followed by NetBSD$ sudo pfctl -e to enable PF.
Alternatively, you can run the rc scripts, NetBSD$ sudo /etc/rc.d/pf
start to enable PF and NetBSD$ sudo /etc/rc.d/pflogd start to
enable the logging.

To load the module automatically at startup, add the following line to
/etc/lkm.conf:

/usr/lkm/pf.o - - - - AFTERMOUNT

If it’s still all correct at this point, you are ready to create your first PF rule
set.

13

First rule set - single machine
This is the simplest possible setup, for a single machine which will not run
any services, and which will talk to one network which may be the Internet.
For now, we will use a /etc/pf.conf which looks like this:

block in all
pass out all keep state

that is, deny any incoming traffic, allow traffic we make ourselves, and
retain state information on our connections. Keeping state information
allows return traffic for all connections we have initiated to pass back to us.
It is worth noting that from OpenBSD 4.1 onwards, the default for pass
rules is to keep state information1, so the equivalent rule set in the new
OpenBSD 4.1 style is even simpler,

minimal rule set, OpenBSD 4.1 and newer keeps state by default
block in all
pass out all

It goes pretty much without saying that passing all traffic generated by a
specific host implies a great deal of trust that the host in question is, in fact,
trustworthy. This is something you do if and only if this is a machine you
know you can trust. If you are ready to use the rule set, you load it with

$ sudo pfctl -ef /etc/pf.conf

1. In fact the new default corresponds to keep state flags S/SA, ensuring that only ini-
tial SYN packets during connection setup create state, eliminating some puzzling error sce-
narios

14

Slightly stricter
For a slightly more structured and complete setup, we start by denying
everything and then allowing only those things we know that we need1.
This gives us the opportunity to introduce two of the features which make
PF such a wonderful tool - lists and macros.

We’ll make some changes to /etc/pf.conf, starting with

block all

Then we back up a little. Macros need to be defined before use:

tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"
udp_services = "{ domain }"

Now we’ve demonstrated several things at once - what macros look like,
we’ve shown that macros may be lists, and that PF understands rules using
port names equally well as it does port numbers. The names are the ones
listed in /etc/services. This gives us something to put in our rules, which
we edit slightly to look like this:

block all
pass out proto tcp to any port $tcp_services
pass proto udp to any port $udp_services

Please remember to add keep state to these rules if your system has a PF
version older than OpenBSD 4.1.

At this point some of us will point out that UDP is stateless, but PF
actually manages to maintain state information despite this. When you ask
a name server about a domain name, it is reasonable to assume that you
probably want to receive the answer. Retaining state information about
your UDP traffic achieves this.

Since we’ve made changes to our pf.conf file, we load the new rules:

peter@skapet:~$ sudo pfctl -f /etc/pf.conf

1. You may ask why do I write the rule set to default deny? The short answer is, it gives
you better control at the expense of some thinking. The point of packet filtering is to take
control, not to run catch-up with what the bad guys do. Marcus Ranum has written a very
entertaining and informative article about this, The Six Dumbest Ideas in Computer Security
(http://www.ranum.com/security/computer_security/editorials/dumb/index.html), which comes
highly recommended. It is a good read.

15

Slightly stricter

and the new rules apply. If there are no syntax errors, pfctl will not output
any messages during the rule load. The -v flag will produce more verbose
pfctl output.

If you have made extensive changes to your rule set, you may want to check
the rules before attempting to load them. The command to do this is, pfctl
-nf /etc/pf.conf. The -n option causes the rules to be interpreted only
without loading the rules. This gives you an opportunity to correct any
errors. Under any circumstances the last valid rule set loaded will be in
force until you either disable PF or load a new rule set.

That is worth noting: When loading a new rule set, the last valid rule set
stays loaded until the new one is fully parsed and loaded, and PF switches
directly from one to the other. There is no intermediate stage with no rules
loaded or a mixture of the two rule sets.

16

Statistics from pfctl
You may want to check that PF is actually running, and perhaps at the
same time look at some statistics. The pfctl program offers a number of
different types of information if you use pfctl -s, adding the type of
information you want to display. The following example is taken from my
home gateway while I was preparing an earlier version of this lecture:

peter@skapet:~$ sudo pfctl -s info
Status: Enabled for 17 days 00:24:58 Debug: Urgent

Interface Stats for ep0 IPv4 IPv6

Bytes In 9257508558 0

Bytes Out 551145119 352

Packets In

Passed 7004355 0

Blocked 18975 0

Packets Out

Passed 5222502 3

Blocked 65 2

State Table Total Rate

current entries 15

searches 19620603 13.3/s

inserts 173104 0.1/s

removals 173089 0.1/s

Counters

match 196723 0.1/s

bad-offset 0 0.0/s

fragment 22 0.0/s

short 0 0.0/s

normalize 0 0.0/s

memory 0 0.0/s

bad-timestamp 0 0.0/s

congestion 0 0.0/s

ip-option 28 0.0/s

proto-cksum 325 0.0/s

state-mismatch 983 0.0/s

state-insert 0 0.0/s

state-limit 0 0.0/s

src-limit 26 0.0/s

synproxy 0 0.0/s

The first line here indicates that PF is enabled and has been running for for
a little more than two weeks, which is equal to the time since I upgraded to
what was then the latest snapshot. pfctl -s all provides highly detailed

17

Statistics from pfctl

information. Try it and have a look, and while there, look into some of the
other pfctl options. man 8 pfctl gives you full information.

At this point you have a single machine which should be able to
communicate reasonably well with other internet connected machines. And
while the rule set is very basic, it serves as an excellent starting point for
staying in control of your network.

This is a very basic rule set and a few things are still missing. For example,
you probably want to let at least some ICMP and UDP traffic through, if
nothing else for your own troubleshooting needs.

And even though more modern and more secure options are available, you
will probably be required to handle the ftp service.

We will return to these items shortly.

18

A simple gateway, NAT if you need it
At this point we finally move on to the more realistic or at least more
common setups, where the machine with the packet filter or firewall
configured also acts as a gateway for at least one other machine.

The other machines on the inside may of course also run firewall software,
but even if they do, it does not affect what we are interested in here to any
significant degree.

Gateways and the pitfalls of in, out and on
In the single machine setup, life is relatively simple. Traffic you create
should either pass or not out to the rest of the world, and you decide what
you let in from elsewhere.

When you set up a gateway, your perspective changes. You go from the "me
versus the network out there" setting to "I am the one who decides what to
pass to or from all the networks I am connected to". The machine has
several, or at least two, network interfaces, each connected to a separate
net.

Now it’s very reasonable to think that if you want traffic to pass from the
network connected to ep1 to hosts on the network connected to ep0, you
will need a rule like

pass in inet proto tcp on ep1 from ep1:network to ep0:network \
port $ports keep state

which keeps track of states as well.1

However, one of the most common and most complained-about mistakes in
firewall configuration is not realizing that the "to" keyword does not in itself
guarantee passage all the way there. In fact, the rule we just wrote only lets
the traffic pass in to the gateway itself, on the specific interface given in the
rule.

1. In fact, even if the keep state part denotes the default behaviour and is redundant if
you are working with OpenBSD 4.1 or equivalent, there is no need to remove the specification
from your rules when upgrading your rule set from earlier versions. To ease transition, the
examples in this tutorial will make this distinction when needed.

19

A simple gateway, NAT if you need it

To let the packets get a bit further on and move into the next network over,
you would need a matching rule which says something like

pass out inet proto tcp on ep0 from ep1:network to ep0:network \
port $ports keep state

These rules will work, but they will not necessarily achieve what you want.

If there are good reasons why you need to have rules which are this specific
in your rule set, you know you need them and why. By the end of this
tutorial you should be able to articulate with some precision, in the context
of your own network, just when such rules are needed. However for the
basic gateway configurations we’ll be dealing with here, what you really
want to use is probably a rule which says

pass inet proto tcp from ep1:network to any port $ports keep state

to let your local net access the Internet and leave the detective work to the
antispoof and scrub code. They are both pretty good these days, and we will
get back to them later. For now we just accept the fact that for simple
setups, interface bound rules with in/out rules tend to add more clutter
than they are worth to your rule sets.

For a busy network admin, a readable rule set is a safer rule set.

For the remainder of this tutorial, with some exceptions, we will keep the
rules as simple as possible for readability.

What is your local network, anyway?
Above we introduced the interface:network notation. That is a nice
piece of shorthand, but you make your rule set even more readable and
maintainable by taking the macro use a tiny bit further.

You could for example define a $localnet macro, initially defined as the
network directly attached to your internal interface (ep1:network in the
examples above).

Alternatively, you could change the definition of $localnet to an IP
address/netmask notation to denote a network, such as
192.168.100.0/24 for a subnet of private IPv4 addresses or
fec0:dead:beef::/64 for an IPv6 range.

20

A simple gateway, NAT if you need it

If your network requires it, you could even define your $localnet as a list
of networks. Whatever your specific needs, a sensible $localnet definition
and a typical pass rule of the type

pass inet proto tcp from $localnet to any port $ports keep state

could end up saving you a few headaches. We will stick to that convention
from here on.

Setting up
We assume that the machine has acquired another network card or at any
rate you have set up a network connection from your local network, via PPP
or other means. We will not consider the specific interface configurations.

For the discussion and examples below, only the interface names will differ
between a PPP setup and an Ethernet one, and we will do our best to get
rid of the actual interface names as quickly as possible.

First, we need to turn on gatewaying in order to let the machine forward
the network traffic it receives on one interface to other networks via a
separate interface. Initially we will do this on the command line with sysctl,
for traditional IP version four

sysctl net.inet.ip.forwarding=1

and if we need to forward IP version six traffic, the command is

sysctl net.inet6.ip6.forwarding=1

In order for this to work once you reboot the computer at some time in the
future, you need to enter these settings into the relevant configuration files.

In OpenBSD and NetBSD, you do this by editing /etc/sysctl.conf, by
changing the lines you need, like this

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

On FreeBSD, you conventionally do the corresponding change by putting
these lines in your /etc/rc.conf

gateway_enable="YES" #for ipv4
ipv6_gateway_enable="YES" #for ipv6

21

A simple gateway, NAT if you need it

The net effect is identical, the FreeBSD rc script sets the two values via the
sysctl command. However, a larger part of the FreeBSD configuration is
centralized into the rc.conf file.

Are both of the interfaces you intend to use up and running? Use ifconfig
-a, or ifconfig interface_name to find out.

If you still intend to allow any traffic initiated by machines on the inside,
your /etc/pf.conf could look roughly like this2:

ext_if = "ep0" # macro for external interface - use tun0 for PPPoE
int_if = "ep1" # macro for internal interface
localnet = $int_if:network
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass inet proto tcp from { lo0, $localnet } to any keep state

Note the use of macros to assign logical names to the network interfaces.
Here 3Com cards are used, but this is the last time during this lecture we
will find this of any interest whatsoever. In truly simple setups like this
one, we may not gain very much by using macros like these, but once the
rule sets grow somewhat larger, you will learn to appreciate the readability
this adds to the rule sets

Also note the nat rule. This is where we handle the network address
translation from the non-routable address inside your local net to the sole
official address we assume has been assigned to you.

The parentheses surrounding the last part of the nat rule ($ext_if) serve
to compensate for the possibility that the IP address of the external
interface may be dynamically assigned. This detail will ensure that your
network traffic runs without serious interruptions even if the external IP
address changes.

On the other hand, this rule set probably allows more traffic than what you
actually want to pass out of your network. Where I work, the equivalent
macro is

client_out = "{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http,\
https, 446, cvspserver, 2628, 5999, 8000, 8080 }"

2. For dialup users who conventionally use some variant of PPP for their Internet connec-
tions, the external interface is the tun0 pseudo-device. Broadband users such as ADSL sub-
scribers tend to have an Ethernet interface to play with, however for a significant subset of
ADSL users, specifically those using PPP over Ethernet (PPPoE), the correct external inter-
face will be the tun0 pseudo-device, not the physical Ethernet interface.

22

A simple gateway, NAT if you need it

with the rule

pass inet proto tcp from $localnet to any port $client_out \
flags S/SA keep state

This may be a somewhat peculiar selection of ports, but it’s exactly what my
colleagues and I need. Some of the numbered ports are needed for systems I
am not allowed to discuss any further. Your needs probably differ at least in
some specifics, but this should cover at least some of the more useful
services.

In addition, we have a few other pass rules. We will be returning to some of
the more interesting ones rather soon. One pass rule which is useful to
those of us who want the ability to administer our machines from elsewhere
is

pass in inet proto tcp from any to any port ssh

or for that matter

pass in inet proto tcp from any to $ext_if port ssh

whichever you like. Lastly we need to make the name service and time
keeping work for our clients

udp_services = "{ domain, ntp }"

supplemented with a rule which passes the traffic we want through our
firewall:

pass quick inet proto { tcp, udp } to any port $udp_services keep state

Note the quick keyword in this rule. We have started writing rule sets
which consist of several rules, and it is time to take a look at the
relationships between the rules in a rule set. The rules are evaluated from
top to bottom, in the sequence they are written in the configuration file. For
each packet or connection evaluated by PF, the last matching rule in the
rule set is the one which is applied. The quick keyword offers an escape
from the ordinary sequence. When a packet matches a quick rule, the
packet is treated according to the present rule. The rule processing stops
without considering any further rules which might have matched the
packet. Quite handy when you need a few isolated exceptions to your
general rules.

23

A simple gateway, NAT if you need it

It is worth noting that we used one rule for both the domain name service
(domain and time synchronization (ntp). The most important reason for
this is that both protocols under certain circumstances communicate
alternately over TCP and UDP.

24

That sad old FTP thing
The short list of real life TCP ports we looked at a few moments back
contained, among other things, FTP. FTP is a sad old thing and a problem
child, emphatically so for anyone trying to combine FTP and firewalls. FTP
is an old and weird protocol, with a lot to not like. The most common points
against it, are

• Passwords are transferred in the clear

• The protocol demands the use of at least two TCP connections (control
and data) on separate ports

• When a session is established, data is communicated via ports selected at
random

All of these points make for challenges security-wise, even before
considering any potential weaknesses in client or server software which
may lead to security issues. These things have tended to happen.

Under any circumstances, other more modern and more secure options for
file transfer exist, such as sftp or scp, which feature both authentication
and data transfer via encrypted connections. Competent IT professionals
should have a preference for some other form of file transfer than FTP.

Regardless of our professionalism and preferences, we are all too aware that
at times we will need to handle things we would prefer not to. In the case of
FTP through firewalls, the main part of our handling consists of redirecting
the traffic to a small program which is written specifically for this purpose.

Depending on your configuration, which operating system you are using as
the platform for your PF firewall and how you count them, three or four
different options are available for this particular task.

We will present them in roughly chronological order according to their ages.
The original FTP proxy for PF is described below in the Section called FTP
through NAT: ftp-proxy. We then move on to two newer, intermediate
solutions developed by Camiel Dobbelaar in the Section called FTP, PF and
routable addresses: ftpsesame, pftpx and ftp-proxy! before finally moving on
to the modern FTP proxy which was introduced in OpenBSD 3.9 in the
Section called ftp-proxy, new style.

25

That sad old FTP thing

FTP through NAT: ftp-proxy

OpenBSD 3.8 or earlier equivalents only

This section is headed for purely historical status when the last PF port to other
systems has caught up. In November 2005, the old ftp-proxy
(/usr/libexec/ftp-proxy) was replaced in OpenBSD-current with the new
ftp-proxy, which lives in /usr/sbin. This is the software which is included in
OpenBSD 3.9 onwards and what you will be using on modern PF versions. See
the Section called ftp-proxy, new style for details.

The old style ftp-proxy which is a part of the base system on systems which
offer a PF version based on OpenBSD3.8 or earlier is usually called via the
inetd "super server" via an appropriate /etc/inetd.conf entry.1

The line quoted here specifies that ftp-proxy runs in NAT mode on the
loopback interface, lo0:

127.0.0.1:8021 stream tcp nowait root /usr/libexec/ftp-proxy \
ftp-proxy -n

This line is by default in your inetd.conf, commented out with a # character
at the beginning of the line. To enable your change, you restart inetd.

On FreeBSD, NetBSD and other rcNG based BSDs you do this with the
command

FreeBSD$ sudo /etc/rc.d/inetd restart

or equivalent. Consult man 8 inetd if you are unsure. At this point inetd is
running with your new settings loaded.

Now for the actual redirection. Redirection rules and NAT rules fall into the
same rule class. These rules may be referenced directly by other rules, and
filtering rules may depend on these rules. Logically, rdr and nat rules need
to be defined before the filtering rules.

We insert our rdr rule immediately after the nat rule in our /etc/pf.conf

rdr on $int_if proto tcp from any to any port ftp -> 127.0.0.1 \

1. You may need to enable inetd by adding a inetd_enable="YES" line to your rc.conf and
possibly adjust other inetd related configuration settings.

26

That sad old FTP thing

port 8021

In addition, the redirected traffic must be allowed to pass. We achive this
with

pass in on $ext_if inet proto tcp from port ftp-data to ($ext_if) \
user proxy flags S/SA keep state

Save pf.conf, then load the new rules with

$ sudo pfctl -f /etc/pf.conf

At this point you will probably have users noticing that FTP works before
you get around to telling them what you’ve done.

This example assumes you are using NAT on a gateway with non routable
addresses on the inside.

FTP, PF and routable addresses: ftpsesame,
pftpx and ftp-proxy!

In cases where the local network uses official, routable address inside the
firewall, I must confess I’ve had trouble making ftp-proxy work properly.
When I’d already spent too much time on the problem, I was rather relieved
to find a solution to this specific problen offered by a friendly Dutchman
called Camiel Dobbelaar in the form of a daemon called ftpsesame.

Local networks using official addresses inside a firewall are apparently rare
enough that I’ll skip over any further treatment. If you need this and you
are running OpenBSD 3.8 or earlier or one of the other PF enabled
operating systems, you could do worse than installing ftpsesame.

On FreeBSD, ftpsesame is available through the ports system as
ftp/ftpsesame. Alternatively you can download ftpsesame from Sentia at
http://www.sentia.org/projects/ftpsesame/.

Once installed and running, ftpsesame hooks into your rule set via an
anchor, a named sub-ruleset. The documentation consists of a man page
with examples which you can more likely than not simply copy and paste.

ftpsesame never made it into the base system, and Camiel went on to write
a new solution to the same set of problems.

27

That sad old FTP thing

The new program, at first called pftpx, is available from
http://www.sentia.org/downloads/pftpx-0.8.tar.gz and through the FreeBSD
ports system as ftp/pftpx. pftpx comes with a fairly complete and well
written man page to get you started.

A further developed version, suitably renamed as the new ftp-proxy,
became a part of the the OpenBSD base system in time for the OpenBSD
3.9. The new program, /usr/sbin/ftp-proxy, and how to set it up, is
described in the Section called ftp-proxy, new style below.

ftp-proxy, new style

For OpenBSD 3.9 and newer

If you are upgrading to OpenBSD 3.9 or newer equivalents or working from a fresh
OpenBSD install, this is the ftp-proxy version to use.

Just like its predecessor, the pftpx successor ftp-proxy configuration is
mainly a matter of cut and paste from the man page.

If you are upgrading to the new ftp-proxy from an earlier version, you need
to remove the ftp-proxy line from your inetd.conf file and restart inetd or
disable it altogether if your setup does not require a running inetd.

Next, enable ftp-proxy by adding the following line to your
/etc/rc.conf.local or /etc/rc.conf

ftpproxy_flags=""

You can start the proxy manually by running /usr/sbin/ftp-proxy if
you like.

Moving on to the pf.conf file, you need two anchor definitions in the NAT
section:

nat-anchor "ftp-proxy/*"
rdr-anchor "ftp-proxy/*"

Both are needed, even if your setup does not use NAT. If you are migrating
from a previous version, your rule set probably contains the appropriate

28

That sad old FTP thing

redirection already. If it does not, you add it:

rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 \
port 8021

Moving on down to the filtering rules, you add an anchor for the proxy to fill
in,

anchor "ftp-proxy/*"

and finally a pass rule to let the packets pass from the proxy to the rest of
the world

pass out proto tcp from $proxy to any port 21 keep state

where $proxy expands to the address the proxy daemon is bound to.

This example covers the simple setup with clients who need to contact FTP
servers elsewhere. For other variations and more complicated setups, see
the ftp-proxy man page.

If you are looking for ways to run an FTP server protected by PF and
ftp-proxy, you could look into running a separate ftp-proxy in reverse mode
(using the -R option).

29

Making your network troubleshooting
friendly

Making your network troubleshooting friendly is a potentially large subject.
At most times, the debugging or troubleshooting friendliness of your
TCP/IP network depends on how you treat the Internet protocol which was
designed specifically with debugging in mind, the Internet Control Message
Protocol, or ICMP as it is usually abbreviated.

ICMP is the protocol for sending and receiving control messages between
hosts and gateways, mainly to provide feedback to a sender about any
unusual or difficult conditions en route to the target host.

There is a lot of ICMP traffic which usually just happens in the background
while you are surfing the web, reading mail or transferring files. Routers
(you are aware that you are building one, right?) use ICMP to negotiate
packet sizes and other transmission parameters in a process often referred
to as path MTU discovery.

You may have heard admins referring to ICMP as either ’just evil’, or, if
their understanding runs a little deeper, ’a necessary evil’. The reason for
this attitude is purely historical. The reason can be found a few years back
when it was discovered that several operating systems contained code in
their networking stack which could make a machine running one of the
affected systems crash and fall over, or in some cases just do really strange
things, with a sufficiently large ICMP request.

One of the companies which was hit hard by this was Microsoft, and you
can find rather a lot of material on the ’ping of death’ bug by using your
favourite search engine. This all happened in the second half of the 1990s,
and all modern operating systems, at least the ones we can read, have
thoroughly sanitized their network code since then. At least that’s what we
are lead to believe.

One of the early workarounds was to simply block either all ICMP traffic or
at least ICMP ECHO, which is what ping uses. Now these rule sets have
been around for roughly ten years, and the people who put them there are
still scared.

30

Making your network troubleshooting friendly

Then, do we let it all through?
The obvious question then becomes, if ICMP is such a good and useful thing,
should we not let it all through, all the time? The answer is, ’It depends’.

Letting diagnostic traffic pass unconditionally of course makes debugging
easier, but it also makes it relatively easy for others to extract information
about your network. That means that a rule like

pass inet proto icmp from any to any

might not be optimal if you want to cloak the internal workings of your
network in a bit of mystery. In all fairness it should also be said that you
might find some ICMP traffic quite harmlessly riding piggyback on your
keep state rules.

The easy way out: The buck stops here
The easiest solution could very well be to let all ICMP traffic from your
local net through and let probes from elsewhere stop at your gateway:

pass inet proto icmp icmp-type $icmp_types from $localnet \
to any keep state

pass inet proto icmp icmp-type $icmp_types from any to $ext_if \
keep state

Stopping probes at the gateway might be an attractive option anyway, but
let us have a look at a few other options which will show you some of PF’s
flexibility.

Letting ping through
The rule set we have developed so far has one clear disadvantage: common
troubleshooting commands such as ping and traceroute will not work. That
may not matter too much to your users, and since it was the ping command
which scared people into filtering or blocking ICMP traffic in the first place,
there are apparently some people who feel we are better off without it. If
you are in my perceived target audience, you will be rather fond of having
those troubleshooting tools avalable. With a couple of small additions to the

31

Making your network troubleshooting friendly

rule set, they will be. ping uses ICMP, and in order to keep our rule set tidy,
we start by defining another macro:

icmp_types = "echoreq"

and a rule which uses the definition,

pass inet proto icmp all icmp-type $icmp_types keep state

You may need more or other types of ICMP packets to go through, and you
can then expand icmp_types to a list of those packet types you want to
allow.

Helping traceroute
traceroute is another command which is quite useful when your users claim
that the Internet isn’t working. By default, Unix traceroute uses UDP
connections according to a set formula based on destination. The rule below
works with the traceroute command on all unixes I’ve had access to,
including GNU/Linux:

allow out the default range for traceroute(8):
"base+nhops*nqueries-1" (33434+64*3-1)
pass out on $ext_if inet proto udp from any to any \

port 33433 >< 33626 keep state

Experience so far indicates that traceroute implementations on other
operating systems work roughly the same. Except, of course, Microsoft
Windows. On that platform, TRACERT.EXE uses ICMP ECHO for this purpose.
So if you want to let Windows traceroutes through, you only need the first
rule. Unix traceroutes can be instructed to use other protocols as well, and
will behave remarkably like its Microsoft counterpart if you use its -I
command line option. You can check the traceroute man page (or its source
code, for that matter) for all the details.

Under any circumstances, this solution was lifted from an openbsd-misc
post. I’ve found that list, and the searchable list archives (accessible among
other places from http://marc.info/), to be a very valuable resource
whenever you need OpenBSD or PF related information.

32

Making your network troubleshooting friendly

Path MTU discovery
The last bit I will remind you about when it comes to troubleshooting is the
’path MTU discovery’. Internet protocols are designed to be device
independent, and one consequence of device independence is that you can
not always predict reliably what the optimal packet size is for a given
connection. The main constraint on your packet size is called the Maximum
Transmission Unit, or MTU, which sets the upper limit on the packet size
for an interface. The ifconfig command will show you the MTU for your
network interfaces.

The way modern TCP/IP implementations work, they expect to be able to
determine the right packet size for a connection through a process which
simply puts involves sending packets of varying sizes with the ’Do not
fragment’ flag set, expecting an ICMP return packet indicating "type 3, code
4", when the upper limit has been reached. Now you don’t need to dive for
the RFCs right away. Type 3 means "destination unreachable", while code 4
is short for "fragmentation needed, but the do not fragment flag is set". So if
your connections to networks which may have other MTUs than your own
seem sub-optimal, and you do not need to be that specific, you could try
changing your list of ICMP types slightly to let the Destination unreachable
packets through, too:

icmp_types = "{ echoreq, unreach }"

as we can see, this means we do not need to change the pass rule itself:

pass inet proto icmp all icmp-type $icmp_types keep state

PF lets you filter on all variations of ICMP types and codes, and if you want
to delve into what to pass and not of ICMP traffic, the list of possible types
and codes are documented in the icmp(4) and icmp6(4) man pages. The
background information is available in the RFCs1 .

1. The main internet RFCs describing ICMP and some related techhiques are RFC792,
RFC950, RFC1191, RFC1256, RFC2521, rfc2765, while necessary updates for ICMP for IPv6
are found in RFC1885, RFC2463, RFC2466. These documents are available in a number of
places on the net, such as the ietf.org (http://www.ietf.org) and faqs.org (http://www.faqs.org)
web sites, and probably also via your package system.
It is quite possible that I will return to ICMP filtering in a future advanced section of the
tutorial.

33

Network hygiene: Blocking, scrubbing
and so on

Our gateway does not feel quite complete without a few more items in the
configuration which will make it behave a bit more sanely towards hosts on
the wide net and our local network.

block-policy
block-policy is an option which can be set in the options part of the
ruleset, which precedes the redirection and filtering rules. This option
determines which feedback, if any, PF will give to hosts which try to create
connections which are subsequently blocked. The option has two possible
values, drop which drops blocked packets with no feedback, and return
which returns with status codes such as Connection refused or similar.

The correct strategy for block policies has been the subject of rather a lot of
discussion. We choose to play nicely and instruct our firewall to issue
returns:

set block-policy return

scrub
scrub is a keyword which enables network packet normalization, causing
fragmented packets to be assembled and removing ambiguity. Enabling
scrub provides a measure of protection against certain kinds of attacks
based on incorrect handling of packet fragments. A number of
supplementing options are available, but we choose the simplest form
which is suitable for most configurations.

scrub in all

Some services, such as NFS, require some specific fragment handling
options. This is extensively documented in the PF user guide and man
pages provide all the information you could need.

34

Network hygiene: Blocking, scrubbing and so on

antispoof
antispoof is a common special case of filtering and blocking. This
mechanism protects against activity from spoofed or forged IP addresses,
mainly by blocking packets appearing on interfaces and in directions which
are logically not possible.

We specify that we want to weed out spoofed traffic coming in from the rest
of the world and any spoofed packets which, however unlikely, were to
originate in our own network:

antispoof for $ext_if
antispoof for $int_if

Handling non-routable addresses from
elsewhere

Even with a properly configured gateway to handle network address
translation for your own network, you may find yourself in the unenviable
position of having to compensate for other people’s misconfigurations.

One depressingly common class of misconfigurations is the kind which lets
traffic with non-routable addresses out to the Internet. Traffic from
non-routeable addresses have also played a part in several DOS attack
techniques, so it may be worth considering explicitly blocking traffic from
non-routeable addresses from entering your network.

One possible solution is the one outlined below, which for good measure also
blocks any attempt to initiate contact to non-routable addresses through
the gateway’s external interface:

martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \
10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, \
0.0.0.0/8, 240.0.0.0/4 }"

block drop in quick on $ext_if from $martians to any
block drop out quick on $ext_if from any to $martians

Here, the martians macro denotes the RFC 1918 addresses and a few
other ranges which are mandated by various RFCs not to be in circulation

35

Network hygiene: Blocking, scrubbing and so on

on the open Internet. Traffic to and from such addresses is quietly dropped
on the gateway’s external interface.

The specific details of how to implement this kind of protection will vary,
among other things according to your specific network configuration. Your
network design could for example dictate that you include or exclude other
address ranges than these.

This completes our simple NATing firewall for a small local network.

36

A web server and a mail server on the
inside

Time passes, and needs change. Rather frequently, a need to run externally
accessible services develops. This quite frequently becomes just a little
harder because externally visible addresses are either not available or too
expensive, and running several other services on a machine which is
primarily a firewall is not a desirable option.

The redirection mechanisms in PF makes it relatively easy to keep servers
on the inside. If we assume that we need to run a web server which serves
up data in clear text (http) and encrypted (https) and in addition we want a
mail server which sends and receives e-mail while letting clients inside and
outside the local network use a number of well known submission and
retrieval protocols, the following lines may be all that’s needed in addition
to the rule set we developed earlier:

webserver = "192.168.2.7"
webports = "{ http, https }"
emailserver = "192.168.2.5"
email = "{ smtp, pop3, imap, imap3, imaps, pop3s }"

rdr on $ext_if proto tcp from any to $ext_if port \
$webports -> $webserver

rdr on $ext_if proto tcp from any to $ext_if port \
$email -> $emailserver

pass proto tcp from any to $webserver port $webports \
flags S/SA synproxy state

pass proto tcp from any to $emailserver port $email \
flags S/SA synproxy state

pass proto tcp from $emailserver to any port smtp \
flags S/SA synproxy state

Notice the flag ’synproxy’ in the new rules. This means that PF will handle
the connection setup (three way handshake) on behalf of your server or
client before handing the connection over to the application. This provides a
certain amount of protection against certain types of attacks.

Rule sets for configurations with DMZ networks isolated behind separate
network interfaces and in some cases services running on alternative ports
will not necessarily be much different from this one.

37

A web server and a mail server on the inside

Taking care of your own - the inside
Everything I’ve said so far is excellent and correct as long as all you are
interested in is getting traffic from hosts outside your local net to reach
your servers.

If you want the hosts in your local net to be able to use the services on these
machines, you will soon see that the traffic originating in your local
network most likely never reaches the external interface. The external
interface is where all the redirection and translation happens, and
consequently the redirections do not quite work from the inside. The
problem is common enough that the PF documentation lists four different
solutions to the problem.1 The options listed in the PF user guide are

• ’Split horizon’ DNS, which means configuring your name service to
provide one set of replies for requests originating in the local net and a
different one for requests from elsewhere

• proxying using software such as nc (NetCat)

• treating the local net as a special case for redirection and NAT.

We will be looking into this option below.

• Or simply moving your servers to a separate network, aka a ’DMZ’, with
only minor changes to your PF rules.

We need to intercept the network packets originating in the local network
and handle those connections correctly, making sure any returning traffic is
directed to the communication partner who actually originated the
connection.

Returning to our previous example, we achieve this by adding these special
case rules:

rdr on $int_if proto tcp from $localnet to $ext_if \
port $webports -> $webserver

rdr on $int_if proto tcp from $localnet to $ext_if \
port $email -> $emailserver

no nat on $int_if proto tcp from $int_if to $localnet
nat on $int_if proto tcp from $localnet to $webserver \

port $webports -> $int_if

1. See Redirection and Reflection (http://openbsd.org/faq/pf/rdr.html#reflect) in the PF user
guide.

38

A web server and a mail server on the inside

nat on $int_if proto tcp from $localnet to $emailserver \
port $email -> $int_if

It is well worth noting that we do not need to touch the pass rules at all.

I’ve had the good fortune to witness via email or IRC the reactions of
several network admins at the point when the truth about this five line
reconfiguration sank in.

39

Tables make your life easier
By this time you may be thinking that this gets awfully static and rigid.
There will after all be some kinds of data which are relevant to filtering and
redirection at a given time, but do not deserve to be put into a configuration
file! Quite right, and PF offers mechanisms for handling these situations as
well. Tables are one such feature, mainly useful as lists of IP addresses
which can be manipulated without needing to reload the entire rule set,
and where fast lookups are desirable. Table names are always enclosed in
angle brackets, ie < >, like this:

table <clients> { 192.168.2.0/24, !192.168.2.5 }

here, the network 192.168.2.0/24 is part of the table, except the address
192.168.2.5, which is excluded using the ! operator (logical NOT). It is
also possible to load tables from files where each item is on a separate line,
such as the file /etc/clients

192.168.2.0/24
!192.168.2.5

which in turn is used to initialize the table in /etc/pf.conf:

table <clients> persist file "/etc/clients"

Then, for example, you can change one of our earlier rules to read

pass inet proto tcp from <clients> to any port $client_out \
flags S/SA keep state

to manage outgoing traffic from your client computers. With this in hand,
you can manipulate the table’s contents live, such as

$ sudo pfctl -t clients -T add 192.168.1/16

Note that this changes the in-memory copy of the table only, meaning that
the change will not survive a power failure or other reboot unless you
arrange to store your changes.

You might opt to maintain the on-disk copy of the table using a cron job
which dumps the table content to disk at regular intervals, using a
command such as pfctl -t clients -T show >/etc/clients.

40

Tables make your life easier

Alternatively, you could edit the /etc/clients file and replace the
in-memory table contents with the file data:

$ sudo pfctl -t clients -T replace -f /etc/clients

For operations you will be performing frequently, you will sooner or later
end up writing shell scripts for tasks such as inserting or removing items or
replacing table contents. The only real limitations lie in your own needs
and your creativity.1

We will be returning to some handy uses of tables shortly, including a few
programs which interact with tables in useful ways.

1. One improvement you could consider is rewriting the martians macro from the Section
called Handling non-routable addresses from elsewhere in the chapter called Network hygiene:
Blocking, scrubbing and so on as a table

41

Logging
Up to now we have not mentioned much about logging. To my mind logging
and by extension keeping track of what goes on in your network, or at least
having the ability to get the information easily is an important part of
staying in control of the network. Fortunately PF provides the opportunity
to log exactly what you want by adding the log keyword to the rules you
want logged. You may want to limit the amount of data a bit by specifying
one interface where the logging is to be done. You do this by adding

set loginterface $ext_if

and then editing the rules you want to log, such as

pass out log from <clients> to any port $email \
label client-email keep state

This causes the traffic to be logged in a binary format which is really only
intended to be used as tcpdump input. Note that log here only logs the
packet which sets up the connection. If you want to log all traffic matching
the rule, you use log (all) in the rule instead1 .

The label part creates a new set of counters for various statistics for the
rule. This can be quite convenient if you are invoicing others for bandwidth
use, for example.

It is worth noting that from OpenBSD 4.1, the pflog interface is cloneable,
which means you can configure as many as you need. At the same time, the
log syntax for each rule was extended to let you specify on a per rule basis
which pflog interface to log to, ie

pass log (all, to pflog2) inet proto tcp from $mailserver to any port smtp

to log outgoing SMTP traffic from the host $mailserver to elsewhere, with
the log data ending up at the pflog2 interface.

Taking a peek with tcpdump
Once you have enabled logging in one or more rules, PF logs via the pflog0

1. In PF implementations based on OpenBSD 3.7 and earlier, the keyword for this was
log-all.

42

Logging

interface, and stores binary log data in the log file /var/log/pflog. The log
file is useful for a permanent record and for those cases where you want to
periodically convert some of the data to other formats. However, if you want
to look at your traffic in real time, you can tell tcpdump to look at the pflog0

log interface instead.

Here is what the output from a couple of log rules can look like on a lazy
Thursday afternoon:

peter@skapet:~$ sudo tcpdump -n -e -ttt -i pflog0

tcpdump: WARNING: pflog0: no IPv4 address assigned

tcpdump: listening on pflog0, link-type PFLOG

Feb 16 16:43:20.152187 rule 0/(match) block in on ep0: 194.54.59.189.2559 >

194.54.107.19.139: [|tcp] (DF)

Feb 16 16:48:26.073244 rule 27/(match) pass in on ep0: 61.213.167.236 >

194.54.107.19: icmp: echo request

Feb 16 16:49:09.563448 rule 0/(match) block in on ep0: 61.152.249.148.80 >

194.54.107.19.55609: [|tcp]

Feb 16 16:49:14.601022 rule 0/(match) block in on ep0: 194.54.59.189.3056 >

194.54.107.19.139: [|tcp] (DF)

Feb 16 16:53:10.110110 rule 0/(match) block in on ep0: 68.194.177.173 >

194.54.107.19: [|icmp]

Feb 16 16:55:54.818549 rule 27/(match) pass in on ep0: 61.213.167.237 >

194.54.107.19: icmp: echo request

Feb 16 16:57:55.577782 rule 27/(match) pass in on ep0: 202.43.202.16 >

194.54.107.19: icmp: echo request

The PF User Guide has a section devoted to logging which contains a
number of very useful suggestions. Combined with among other things the
tcpdump man pages, you should be able to extract any log data you will find
useful.

Other log tools you may want to look into
The logs themselves and the various tcpdump options provide you with
valuable tools to gain insight into what happens in your network. Not
surprisingly, other tools have been developed to operate on PF log data,
collect statistics and do various forms of graphing.

Of special note is Damien Miller’s pfflowd, which collects PF log data,
converts to Cisco NetFlow™ for further processing. Damien also develops
and maintains see flowd for NetFlow™ collecting purposes. This Cisco
originated data format is supported by a number of different products, and

43

Logging

the ability to generate data in this format may be important in certain
environments.

One other log data application which is well worth noting is Daniel
Hartmeier’s pfstat, which collects statistics from PF logs and generates
graphs from the data. It’s a fairly flexible package which takes a lot of the
heavy lifting out of presenting log data.

But there are limits (an anecdote)
It might feel tempting at first to put something like this in

block log all

- just to make sure you don’t miss anything.

The PF user guide contains a detailed description of how to make PF log to
a human readable text format via syslog, and this does sound rather
attractive. I went through the procedure described there when I set up my
first PF configuration at work, and the experience sums up rather neatly:
Logging is useful, but by all means, be selective. After a little more than an
hour the PF text log file had grown to more than a gigabyte, on a machine
with less than ten gigabytes of disk space total.

The explanation is simply that even in a rather unexciting Internet
backwater, at the far end of an unexceptional ADSL line there’s still an
incredible amount of uncontrolled Windows traffic such as file sharing and
various types of searches trying to get to you. The Windows boxes on the
inside probably weren’t totally quiet either. At any rate: put some sensible
limit on what you log, or make arrangements for sufficient disk space,
somewhere.

44

Keeping an eye on things with pftop
If you are interested in keeping an eye on what passes in to and out of your
network, Can Erkin Acar’s pftop is a very useful tool. The name is a strong
hint at what it does - pftop shows a running snapshot of your traffic in a
format which is strongly inspired by top(1):

pfTop: Up State 1-21/67, View: default, Order: none, Cache: 10000 19:52:28

PR DIR SRC DEST STATE AGE EXP PKTS BYTES

tcp Out 194.54.103.89:3847 216.193.211.2:25 9:9 28 67 29 3608

tcp In 207.182.140.5:44870 127.0.0.1:8025 4:4 15 86400 30 1594

tcp In 207.182.140.5:36469 127.0.0.1:8025 10:10 418 75 810 44675

tcp In 194.54.107.19:51593 194.54.103.65:22 4:4 146 86395 158 37326

tcp In 194.54.107.19:64926 194.54.103.65:22 4:4 193 86243 131 21186

tcp In 194.54.103.76:3010 64.136.25.171:80 9:9 154 59 11 1570

tcp In 194.54.103.76:3013 64.136.25.171:80 4:4 4 86397 6 1370

tcp In 194.54.103.66:3847 216.193.211.2:25 9:9 28 67 29 3608

tcp Out 194.54.103.76:3009 64.136.25.171:80 9:9 214 0 9 1490

tcp Out 194.54.103.76:3010 64.136.25.171:80 4:4 64 86337 7 1410

udp Out 194.54.107.18:41423 194.54.96.9:53 2:1 36 0 2 235

udp In 194.54.107.19:58732 194.54.103.66:53 1:2 36 0 2 219

udp In 194.54.107.19:54402 194.54.103.66:53 1:2 36 0 2 255

udp In 194.54.107.19:54681 194.54.103.66:53 1:2 36 0 2 271

Your connections can be shown sorted by a number of different criteria,
among others by PF rule, volume, age and so on.

This program is not in the base system itself, probably because it is possible
to extract equivalent information using various pfctl options. pftop is
however available as a package, in ports on OpenBSD and FreeBSD both as
sysutils/pftop, on NetBSD via pkgsrc as sysutils/pftop.

45

Invisible gateway - bridge
A bridge in our context is a machine with two or more network interfaces,
located in between the Internet and one or more internal networks, and the
network interfaces are not assigned IP addresses. If the machine in
question runs OpenBSD or a similarly capable operating system, it is still
able to filter and redirect traffic. The advantage of such a setup is that
attacking the firewall itself is more difficult. The disadvantage is that all
admin tasks must be performed at the firewall’s console, unless you
configure a network interface which is reachable via a secured network of
some kind, or even a serial console.

The exact method for configuring bridges differs in some details between
the operating systems. Below is a short recipe for use on OpenBSD, which
for good measure blocks all non-Internet protocol traffic. Setting up a bridge
with two interfaces:

/etc/hostname.ep0

up

/etc/hostname.ep1

up

/etc/bridgename.bridge0

add ep0 add ep1 blocknonip ep0 blocknonip ep1 up

/etc/pf.conf

ext_if = ep0
int_if = ep1
interesting-traffic = { ... }
block all
pass quick on $ext_if all
pass log on $int_if from $int_if to any port $interesting-traffic \

keep state

Significantly more complicated setups are possible. Experienced bridgers
recommend picking one of the interfaces to perform all filtering and
redirection. All packets pass through PF’s view twice, making for
potentially extremely complicated rules.

46

Invisible gateway - bridge

In addition, the OpenBSD brconfig command offers its own set of filtering
options in addition to other configuration options. The bridge(4) and
brconfig(8) man pages offer further information.

FreeBSD uses a slightly different set of commands to configure bridges,
while the NetBSD PF implementation supports bridging only with a
slightly customized kernel1 .

1. See The NetBSD PF documentation (http://www.netbsd.org/Documentation/network/pf.html)
for details.

47

Directing traffic with ALTQ
ALTQ - short for ALTernate Queueing - is a very flexible mechanism for
directing network traffic which lived a life of its own before getting
integrated into PF. Altq was another one of those things which were
integrated into PF because of the additional convenience it offered when
integrated.

Altq uses the term queue about the main traffic control mechanisms.
Queues are defined with a defined amount of bandwidth or a specific part of
available bandwidth, where a queue can be assigned subqueues of various
types.

To complete the picture, you write filtering rules which assign packets to
specified queues or a selection of subqueues where packets pass according
to specified criteria.

Queues are created with one of several queue disciplines. The default queue
discipline without ALTQ is FIFO (first, in first out).

A slightly more interesting discipline is the class based discipline (CBQ),
which in practical terms means you define the queue’s bandwidth as a set
amount of data per second, as a percentage or in units of kilobits, megabits
and so on, with an additional priority as an option, or priority based (priq),
where you assign priority only.

Priorities can be set at 0 to 7 for cbq queues, 0 to 15 for priq queues, with a
higher value assigning a higher priority and preferential treatment. In
addtion, the hierarcical queue algoritm "Hierarchical Fair Service Curve" or
HFSC is available.

Briefly, a simplified syntax is

altq on interface type [options ...] main_queue { sub_q1, sub_q2 ..}
queue sub_q1 [options ...]
queue sub_q2 [options ...]

[...]
pass [...] queue sub_q1
pass [...] queue sub_q2

If you will be using these features in you own rule sets, you should under
any circumstances read the pf.conf man page and the PF user guide. These
documents offer a very detailed and reasonably well laid out explanation of

48

Directing traffic with ALTQ

the syntax and options.1 2

ALTQ - prioritizing by traffic type
Our first real example is lifted from Daniel Hartmeier’s web. Like quite a
few of us, Daniel is on an asymmetric connection, and naturally he wanted
to get better bandwidth utilization.

One symptom in particular seemed to indicate that there was room for
improvement. Incoming traffic (downloads) apparently slowed down
outgoing traffic.

Analyzing the data indicated that the ACK packets for each data packet
transferred caused a disproportionately large slowdown, possibly due to the
FIFO (First In, First Out) queue discipline in effect on the outgoing traffic.

A testable hypothesis formed - if the tiny, practically dataless ACK packets
were able to slip inbetween the larger data packets, this would lead to a
more efficient use of available bandwidth. The means were two queues with
different priorities. The relevant parts of the rule set follows:

ext_if="kue0"

altq on $ext_if priq bandwidth 100Kb queue { q_pri, q_def }
queue q_pri priority 7
queue q_def priority 1 priq(default)

pass out on $ext_if proto tcp from $ext_if to any flags S/SA \
keep state queue (q_def, q_pri)

pass in on $ext_if proto tcp from any to $ext_if flags S/SA \
keep state queue (q_def, q_pri)

The result was indeed better performance.

1. On FreeBSD, ALTQ requires the ALTQ and queue discipline options for the dis-
ciplines you want to use to be compiled into the running kernel. Refer to the
PF chapter (http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-pf.html) of
the FreeBSD Handbook for further information.
2. At the time of writing, ALTQ isn in the process of getting integrated in the NetBSD 4.0
PF implementation. For earlier NetBSD versions, Peter Postma maintains a patch to enable
PF/ALTQ functions. Up to date information on this, including how to get the ALTQ patch via
pkgsrc, is available from Peter Postmas PF on NetBSD pages, http://nedbsd.nl/~ppostma/pf/
and The NetBSD PF documentation (http://www.netbsd.org/Documentation/network/pf.html).

49

Directing traffic with ALTQ

So why does this work?
So why does this work?3 The reason lies in how the ALTQ code treats
subqueues with different priorities. Once a connection is assigned to the
main queue, ALTQ inspects each packet’s type of service (ToS) field. ACK
packets have the ToS Delay bit set to ’low’, which indicates that the sender
wanted the speediest delivery possible.

When ALTQ sees a low delay packet and queues of differing priorities are
available, it will assign the packet to the higher priority queue. This means
that the ACK packets skip ahead of the lower priority queue and are
delivered more quickly, which in turn means that data packets are serviced
more quickly, too.

Daniel’s article is available from his web site at
http://www.benzedrine.cx/ackpri.html

ALTQ - allocation by percentage
We move on to another example, which I for all practical purposes swiped
from the Swedish site unix.se. The queues are set up on the external
interface. This is probably the more common approach, since the limitations
on bandwidth are usually more severe on the external interface. In
principle, however, allocating queues and running traffic shaping can be
done on any network interface. Here, the setup includes a cbq queue for a
total bandwidth of 640KB with six sub queues.

altq on $ext_if cbq bandwidth 640Kb queue { def, ftp, udp, http, \
ssh, icmp }

queue def bandwidth 18% cbq(default borrow red)
queue ftp bandwidth 10% cbq(borrow red)
queue udp bandwidth 30% cbq(borrow red)
queue http bandwidth 20% cbq(borrow red)
queue ssh bandwidth 20% cbq(borrow red) { ssh_interactive, ssh_bulk }
queue ssh_interactive priority 7
queue ssh_bulk priority 0
queue icmp bandwidth 2% cbq

We see the subqueue def with 18 percent of the bandwidth is designated as
the default queue, that is any traffic not explicitly assigned to some other

3. Earlier versions of this tutorial left the explanation pretty much as an exercise to the
reader.

50

Directing traffic with ALTQ

queue ends up here. The borrow and red keywords mean that the queue
may ’borrow’ bandwidth from its parent queue, while the system attempts
to avoid congestion by applying the RED (Random Early Detection)
algorithm. The other queues follow more or less the same pattern, up to the
subqueue ssh, which itself has two subqueues with separate priorities.

In the ssh queue, again we see a variation of the ACK priority via
subqueues scheme: Bulk SSH transfers, typically SCP file transfers, get
transmitted with a ToS indicating normal delay, while interactive SSH
traffic has the low delay bit set and skips ahead of the bulk transfers.

This scheme probably also helps the speed of SCP file transfers, since the
SCP ACK packets will be assigned to the higher priority subqueue.

Finally, the pass rules which show which traffic gets assigned to the queues,
and their criteria:

pass log quick on $ext_if proto tcp from any to any port 22 flags S/SA \
keep state queue (ssh_bulk, ssh_interactive)

pass in quick on $ext_if proto tcp from any to any port 20 flags S/SA \
keep state queue ftp

pass in quick on $ext_if proto tcp from any to any port 80 flags S/SA \
keep state queue http

pass out on $ext_if proto udp all keep state queue udp
pass out on $ext_if proto icmp all keep state queue icmp

We can reasonably assume that this allocation meets the site’s needs.

The full description can be found at the Unix.se site as
http://unix.se/Brandv%E4gg_med_OpenBSD

ALTQ - handling unwanted traffic
Our last altq example is one which surfaced around the time of one of the
many spam or virus storms we’ve seen during the last few years. It’s fairly
common knowledge that the machines causing these bursts of email are
practically all Windows machines. PF has a fairly reliable operating system
fingerprinting mechanism which detects the operating system at the other
end of a network connection. One OpenBSD user got sufficiently tired of all
this meaningless traffic, and posted some selected bits of his pf.conf on his
blog:

altq on $ext_if cbq queue { q_default q_web q_mail }

51

Directing traffic with ALTQ

queue q_default cbq(default)
queue q_web (...)

all mail limited to 1Mb/sec
queue q_mail bandwidth 1Mb { q_mail_windows }
windows mail limited to 56Kb/sec
queue q_mail_windows bandwidth 56Kb

pass in quick proto tcp from any os "Windows" to $ext_if port 25 \
keep state queue q_mail_windows

pass in quick proto tcp from any to $ext_if port 25 label "smtp" \
keep state queue q_mail

" I can’t believe I didn’t see this earlier. Oh, how sweet. ...
Already a huge difference in my load. Bwa ha ha. "

Randal L. Schwartz, 29. january 2004,
http://use.perl.org/~merlyn/journal/17094

Here all email traffic is assigned one megabit worth of bandwidth, while
email traffic originating at Windows hosts get to share a subqueue of 56
kbit total. No wonder the total load went down and the blog post ends with
what must be an evil chuckle.

I must confess this is something I’ve wanted very much to do myself, but
I’ve never dared. A few too many of our customers have for their own
reasons chosen to run their mail service on Windows, and we do like to
receive most of their mail. In a little while, we’ll have a look at a different
PF approach which may have achieved much of the same effect.

52

CARP and pfsync
CARP and pfsync were two of the main new items in OpenBSD 3.5. CARP
is short for Common Address Redundancy Protocol. The protocol was
developed as a non patent encumbered alternative to VRRP (Virtual Router
Redundancy Protocol, RFC 2281, RFC 3768), which was quite far along the
track to becoming an IETF sanctioned standard, even though possible
patent issued has not been resolved. The patents involved are held by Cisco,
IBM and Nokia.

Both protocols are intended to ensure redundancy for essential network
features, with automatic failover.

CARP is based on setting up a group of machines as one ’master’ and one of
more redundant ’slaves’, all of which are equipped to handle a common IP
address. If the master goes down, one of the slaves will inherit the IP
address, and if the synchronization has been properly handled, active
connections will be handed over. The handover may be authenticated using
cryptographic keys.

One of the main purposes of CARP is to ensure that the network will keep
functioning as usual even when a firewall or other service goes down due to
errors or planned maintenance activities such as upgrades.

In the case of PF firewalls, pfsync can handle the synchronization. pfsync is
a type of virtual network interface specially designed to synchronize state
information between PF firewalls. pfsync interfaces are assigned to physical
interfaces with ifconfig. On networks where uptime requirements are strict
enough to dictate automatic failover, the number of simultaneous network
connections is likely to be large enough that it will make sense to assign the
pfsync network its own physical network.

I hope to explore these exciting and advanced features in a future advanced
section of the tutorial. At this point, the best pfsync and CARP references
are the OpenBSD FAQ, the man pages and Ryan McBride’s overview article
at http://www.countersiege.com/doc/pfsync-carp/.

53

Wireless networks made simple
It is rather tempting to say that on BSD, and on OpenBSD in particular,
there’s no need to ’make wireless networking simple’, because it already is.
Getting a wireless network running is basically not very different from
getting a wired one up and running, but then of course there are some
issues which turn up simply because we are dealing with radio waves and
not wires. We will look briefly at some of the issues before moving on to the
practical steps involved in creating a usable setup.

A little IEEE 802.11 background
Moving to wireless networks provides an opportunity to view security at
various level in the networking stack from a new perspective. We look
briefly at two of the basic IEEE 802.11 security mechanisms below.1

It goes almost without saying that you will need further security measures,
such as SSH or SSL encryption, to maintain any significant level of
confidentiality for your data stream.

WEP (Wired Equivalent Privacy)
One consequence of using radio waves instead of wires is that it is
comparatively easy for outsiders to capture your data in transit. The
designers of the 802.11 family of wireless network standards seem to have
been aware of this fact, and came up with a solution which they marketed
under the name Wired Equivalent Privacy, or WEP.

WEP is a link level encryption scheme which is considered a pretty
primitive homebrew among cryptography professionals. It was no great
surprise that WEP encryption was reverse-engineered and cracked within a
few months after the first products were released. Even though you can
download tools for free to descramble WEP encoded traffic in a matter of
minutes, for a variety of reasons it is still widely supported and used. You

1. For a more complete overview of issues surrounding security in wireless net-
works, see eg Professor Kjell Jørgen Hole’s articles and slides at www.kjhole.com
(http://www.kjhole.com/Standards/WiFi/WiFiDownloads.html). For fresh developments in the
WiFI field, the sites wifinetnews.com (http://wifinetnews.com/archives/cat_security.html) and
The Unofficial 802.11 Security Web Page (http://www.drizzle.com/~aboba/IEEE/) come higly
recommended.

54

Wireless networks made simple

should consider network traffic protected only by WEP to be only
marginally more secure than data broadcast in the clear. Then again, the
token effort needed to crack into a WEP network may be sufficient to deter
lazy and unsophisticated attackers.

WPA (WiFi Protected Access)
It dawned fairly quickly on the 802.11 designers that their Wired
Equivalent Privacy system was not quite what it was cracked up to be, and
they came up with a revised and slightly more comprehensive solution
which was dubbed WiFi Protected Access, or WPA.

WPA looks better than WEP, at least on paper, but the specification is
complicated enough that it is not nearly as widely supported or
implemented as its designers intended. In addition WPA has also attracted
its share of criticism over design issues and bugs. Combined with the
familiar issues of access to documentation and hardware, free software
support varies. If your project specification includes WPA, look carefully at
your operating system and driver documentation.

Setting up a simple wireless network
The first part is to make sure you have a supported card and check your
dmesg output to see that the driver loads and initializes the card properly2

2. Wireless network support in OpenBSD and BSDs in general is getting better all the time,
but this does not mean that getting all the bits you need is necessarily easy. A brief history of
my home network goes like this: I started out buying two CNet CWP-854 cards, which should
be supported in OpenBSD 3.7 via the new ral driver. The one I put in the brand new Dell ma-
chine running a non-free operating system worked right out of the box. My gateway, which had
been running without incident since the 3.3 days however, was a little more problematic. The
card did get recognized and configured, but once the Dell tried to get an IP address, the gate-
way went down with a kernel panic. The gory details are available as OpenBSD PR number
4217. I have promised to test the card again with a new snapshot - as soon as I can locate the
card again. From the Dell we could see an amazing number of networks, almost all unsecured,
but that’s another story entirely.
I decided i wanted to try ath cards, and bought a D-Link DWL-G520, which I then managed
to misplace while moving house. Next, I bought a DWL-G520+, thinking that the plus sign
must mean it’s better. Unfortunately, the plus meant a whole different chipset was used, the
TI ACX111, which comes with a low price tag but with no documentation accessible to free
software developers. Fortunately the store let me return the card for a refund with no trouble
at all. At this point, I was getting rather frustrated, and went all across town to a shop which
had several DWL-AG520 cards in stock. It was a bit more expensive than the others, but it did

55

Wireless networks made simple

With a successfully configured card you should see someting like

ath0 at pci1 dev 4 function 0 "Atheros AR5212" rev 0x01: irq 11
ath0: AR5212 5.6 phy 4.1 rf5111 1.7 rf2111 2.3, ETSI1W, address
00:0d:88:c8:a7:c4

Next, you need to configure the interface for TCP/IP. On OpenBSD, this
means an /etc/hostname.ath0 roughly like this:

up media autoselect mediaopt hostap mode 11b chan 6 nwid unwiredbsd \
nwkey 0x1deadbeef9
inet 10.168.103.1

Note that the configuration is divided over two lines. The first line
generates an ifconfig command which sets up the interface with the correct
parameters for the physical wireless network, the second command, which
gets executed only after the first one completes, sets the IP address. Note
that we set the channel explicitly, and we enable a weak WEP encryption
by setting the nwkey parameter.

On FreeBSD you would need to put those lines in your /etc/start_if.ath0,
and substitute your interface name for ath0 if required

Then you most likely want to set up dhcpd to serve addresses and other
relevant network information to clients. Your clients would need an
/etc/hostname.ath0 configuration of

up media autoselect mode 11b chan 6 nwid unwiredbsd nwkey 0x1deadbeef9
dhcp

and again on FreeBSD, you would need to put those lines in your
/etc/start_if.ath0, and substitute your interface name for ath0 here if
required.

Assuming your gateway does NAT, you will want to set up NAT for the
wireless network as well, by making some small changes to your

work right away. A couple of weeks later the G520 turned up, and of course that worked too.
My laptop (which at the time ran FreeBSD) came with a Realtek 8180 wireless mini-PCI card
built in, but for some reason I could not get it to work. I ended up buying DWL-AG650 cardbus
card, which works flawlessly with the ath driver. In general, my advice is, if you shop online,
keep the man pages available in another tab or window, and if you go to a physical store, make
sure to tell the clerks you will be using a BSD, and if you’re not sure about the card they are
trying to sell you, see if you can borrow a machine to browse the online man pages. Telling the
clerks up front could end up making it easier to get a refund if the part does not work, and
telling them the card did work is good advocacy.
It is possibly worth noting that the acx driver, introduced in OpenBSD 4.0, has brought reverse
engineered support for ACX1nn based cards to the BSDs.

56

Wireless networks made simple

/etc/pf.conf:

air_if = "ath0"

and

nat on $ext_if from $air_if:network to any -> ($ext_if) static-port

You will need a similar near duplicate line for your ftp-proxy config, and
include $air_if in your pass rules.

That’s all there is to it. This configuration gives you a functional BSD
access point, with at least token security via WEP encryption.

57

An open, yet tightly guarded wireless
network with authpf

As always, there are other ways to configure the security of your wireless
network than the one we have just seen. What little protection WEP
encryption offers, security professionals tend to agree is barely enough to
signal to an attacker that you do not intend to let all and sundry use your
network resources.

A different approach appeared one day in my mail as a message from my
friend Vegard Engen, who told me he had been setting up authpf. authpf is
a user shell which lets you load PF rules on a per user basis, effectively
deciding which user gets to do what.

To use authpf, you create users with the authpf program as their shell. In
order to get network access, the user logs in to the gateway using ssh. Once
the user successfully completes ssh authentication, authpf loads the rules
you have defined for the user or the relevant class of users.

These rules, which apply to the IP address which the user logged in from,
stay loaded and in force for as long as the user stays logged in via the ssh
connection. Once the connection is terminated, the rules are unloaded, and
in most scenarios all non-ssh traffic from the user’s IP address is denied.
With a reasonable setup, only traffic originated by authenticated users will
be let through.

Vegard’s annotated config follows below. His wireless network is configured
without WEP encryption, preferring to handle the security side of things
via PF and authpf:

Start with creating an empty /etc/authpf/authpf.conf. It needs to be there
for authpf to work, but doesn’t actually need any content.

The other relevant bits of /etc/pf.conf follow. First, interface macros:

int_if="sis1"
ext_if="sis0"
wi_if = "wi0"

The use of this address will become apparent later:

auth_web="192.168.27.20"

58

An open, yet tightly guarded wireless network with authpf

The traditional authpf table

table <authpf_users> persist

We could put the NAT part in authpf.rules, but keeping it in the main
pf.conf doesn’t hurt:

nat on $ext_if from $wi_if:network to any -> ($ext_if)

Redirects to let traffic reach servers on the internal net. These could be put
in authpf.rules too, but since they do not actually provide access without
pass rules, keeping them here won’t hurt anything.

rdr on $wi_if proto tcp from any to $myaddr port $tcp_in -> $server
rdr on $wi_if proto udp from any to $myaddr port $udp_in -> $server

The next redirect sends all web traffic from non authenticated users to port
80 on $auth_web. In Vegard’s setup, this is a web server which displays
contact info for people who stumble onto the wireless net. In a commercial
setting, this would be where you would put something which could handle
credit cards and create users.

rdr on $wi_if proto tcp from ! <authpf_users> to any \
port 80 -> $auth_web

To activate nat, binat or redirects in authpf

nat-anchor "authpf/*"
binat-anchor "authpf/*"
rdr-anchor "authpf/*"

On to the filtering rules, we start with a sensible default

block all

Other global, user independent rules would go here. Next for the authpf
anchor, we make sure non-authenticated users connecting to the wireless
interface get redirected to $auth_web

anchor "authpf/*" in on wi0

pass in on $wi_if inet proto tcp from any to $auth_web \
port 80 keep state

There are three things we want anyway on the wireless interface: Name
service (DNS), DHCP and SSH in to the gateway. Three rules do the trick

59

An open, yet tightly guarded wireless network with authpf

pass in on $wi_if inet proto udp from any port 53 keep state

pass in on $wi_if inet proto udp from any to $wi_if port 67

pass in on $wi_if inet proto tcp from any to $wi_if \
port 22 keep state

Next up, the we define the rules which get loaded for all users who log in
with their shell set to /usr/sbin/authpf. These rules go in
/etc/authpf/authpf.rules,

int_if = "sis1"
ext_if = "sis0"
wi_if = "wi0"
server = "192.168.27.15"
myaddr = "213.187.n.m"

Services which live on the internal network
and need to be accessible
tcp_services = "{ 22, 25, 53, 80, 110, 113, 995 }"
udp_services = "{ 53 }"
tcp_in = " { 22, 25, 53, 80, 993, 2317, pop3}"
udp_in = "{ 53 }"

Pass traffic to elsewhere, that is the outside world
pass in on $wi_if inet from <authpf_users> to ! $int_if:network \

keep state

Let authenticated users use services on
the internal network.

pass in on $wi_if inet proto tcp from <authpf_users> to $server \
port $tcp_in keep state

pass in on $wi_if inet proto udp from <authpf_users> to $server \
port $udp_in keep state

Also pass to external address. This means you can access
internal services on external addesses.

pass in on $wi_if inet proto tcp from <authpf_users> to $myaddr \
port $tcp_in keep state

pass in on $wi_if inet proto udp from <authpf_users> to $myaddr \
port $udp_in keep state

At this point we have an open net where anybody can connect and get an IP
address from DHCP. All HTTP requests from non-authenticated users get
redirected to port 80 on 192.168.27.20, which is a server on the internal net

60

An open, yet tightly guarded wireless network with authpf

where all requests are answered with the same page, which displays
contact info in case you want to be registered and be allowed to use the net.

You are allowed to ssh in to the gateway. Users with valid user IDs and
passwords get rule sets with appropriate pass rules loaded for their
assigned IP address.

We can fine tune this even more by making user specific rules in
/etc/authpf/users/$user/authpf.rules. Per user rules can use the $user_ip
macro for the user’s IP address. For example, if I want to give myself
unlimited access, create the following
/etc/authpf/users/vegard/authpf.rules:

wi_if="wi0"
pass in on $wi_if from $user_ip to any keep state

61

Turning away the brutes
If you run a Secure Shell login service anywhere which is accessible from
the Internet, I’m sure you’ve seen things like these in your authentication
logs:

Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from
200.72.41.31 port 40992 ssh2
Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from
200.72.41.31 port 40992 ssh2
Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from
200.72.41.31: 11: Bye Bye
Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from
200.72.41.31
Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request:
invalid user admin
Sep 26 03:12:44 skapet sshd[24703]: Failed password for invalid user
admin from 200.72.41.31 port 41484 ssh2
Sep 26 03:12:44 skapet sshd[29635]: Failed password for invalid user
admin from 200.72.41.31 port 41484 ssh2
Sep 26 03:12:45 skapet sshd[24703]: Connection closed by 200.72.41.31
Sep 26 03:13:10 skapet sshd[11459]: Failed password for root from
200.72.41.31 port 43344 ssh2
Sep 26 03:13:10 skapet sshd[7635]: Failed password for root from
200.72.41.31 port 43344 ssh2
Sep 26 03:13:10 skapet sshd[11459]: Received disconnect from
200.72.41.31: 11: Bye Bye
Sep 26 03:13:15 skapet sshd[31357]: Invalid user admin from 200.72.41.31
Sep 26 03:13:15 skapet sshd[10543]: input_userauth_request: invalid
user admin
Sep 26 03:13:15 skapet sshd[10543]: Failed password for invalid user
admin from 200.72.41.31 port 43811 ssh2
Sep 26 03:13:15 skapet sshd[31357]: Failed password for invalid user
admin from 200.72.41.31 port 43811 ssh2
Sep 26 03:13:15 skapet sshd[10543]: Received disconnect from
200.72.41.31: 11: Bye Bye
Sep 26 03:13:25 skapet sshd[6526]: Connection closed by 200.72.41.31

It gets repetetive after that. This is what a brute force attack looks like.
Essentially somebody, or more likely, a cracked computer somewhere, is
trying by brute force to find a combination of user name and password
which will let them into your system.

The simplest response would be to write a pf.conf rule which blocks all
access. This leads to another class of problems, including what you do in
order to let people with legitimate business on your system access it

62

Turning away the brutes

anyway. You might consider moving the service to some other port, but then
again, the ones flooding you on port 22 would probably be able to scan their
way to port 22222 for a repeat performance.

Since OpenBSD 3.71, PF has offered a slightly more elegant solution. You
can write your pass rules so they maintain certain limits on what
connecting hosts can do. For good measure, you can banish violators to a
table of addresses which you deny some or all access. You can even choose
to drop all existing connections from machines which overreach your limits,
if you like. Here’s how it’s done:

Now first set up the table. In your tables section, add

table <bruteforce> persist

Then somewhere fairly early in your rule set you set up to block from the
bruteforcers

block quick from <bruteforce>

And finally, your pass rule.

pass inet proto tcp from any to $localnet port $tcp_services \
flags S/SA keep state \

(max-src-conn 100, max-src-conn-rate 15/5, \
overload <bruteforce> flush global)

This is rather similar to what we’ve seen before, isn’t it? In fact, the first
part is identical to the one we constructed earlier. The part in brackets is
the new stuff which will ease your network load even further.

max-src-conn is the number of simultaneous connections you allow from
one host. In this example, I’ve set it at 100, in your setup you may want a
slightly higher or lower value.

max-src-conn-rate is the rate of new connections allowed from any single
host, here 15 connections per 5 seconds. Again, you are the one to judge
what suits your setup.

overload <bruteforce> means that any host which exceeds these limits gets
its address added to the table bruteforce. Our rule set blocks all traffic from
addresses in the bruteforce table.

1. Introduced to FreeBSD in version 6.0

63

Turning away the brutes

finally, flush global says that when a host reaches the limit, that host’s
connections will be terminated (flushed). The global part says that for good
measure, this applies to connections which match other pass rules too.

The effect is dramatic. My bruteforcers more often than not end up with
"Fatal: timeout before authentication" messages, which is exactly what we
want.

Once again, please keep in mind that this example rule is intended mainly
as an illustration. It is not unlikely that your network’s needs are better
served by rather different rules or combinations of rules.

If, for example, you want to allow a generous number of connections in
general, but would like to be a little more tight fisted when it comes to ssh,
you could supplement the rule above with something like the one below,
early on in your rule set:

pass quick proto { tcp, udp } from any to any port ssh \
flags S/SA keep state \
(max-src-conn 15, max-src-conn-rate 5/3, \
overload <bruteforce> flush global)

You should be able to find the set of parameters which is just right for your
situation by reading the relevant man pages and the PF User Guide
(http://www.openbsd.org/faq/pf/), and perhaps a bit of experimentation.

You may not need to block all of your overloaders

It is probably worth noting at this point that the overload mechanism is a general
technique which does not have to apply exclusively to the ssh service, and it is not
necessarily always optimal to block all traffic from offenders entirely.

You could for example use an overload rule to protect a mail service or a web
service, and you could use the overload table in a rule to assign offenders to a
queue with a minimal bandwidth allocation (see the Section called ALTQ -
handling unwanted traffic in the chapter called Directing traffic with ALTQ) or, in
the web case, to redirect to a specific web page (much like in the authpf example
in the chapter called An open, yet tightly guarded wireless network with authpf).

64

Turning away the brutes

expiretable tidies your tables
At this point, we have tables which will be filled by our overload rules, and
since we could reasonably expect our gateways to have months of uptime,
the tables will grow incrementally, taking up more memory as time goes by.

You could also find that an IP address you blocked last week due to a brute
force attack was in fact a dynamically assigned one, which is now assigned
to a different ISP customer who has a legitimate reason to try
communicating with hosts in your network.

Situations like these were what caused Henrik Gustafsson to write
expiretable, which removes table entries which have not been accessed for a
specified period of time.

One useful example is to use the expiretable program as a way of removing
outdated <bruteforce> table entries.

You could for example let expiretable remove <bruteforce> table entries
older than 24 hours by adding an entry containing the following to your
/etc/rc.local file:

/usr/local/sbin/expiretable -v -d -t 24h bruteforce

expiretable was recently added to the ports tree on FreeBSD and
OpenBSD2.

If expiretable is not available via your package system, you can download it
from Henrik’s site at http://expiretable.fnord.se/

expiring table entries with pfctl

In OpenBSD 4.1, pfctl acquired the ability to expire table entries not referenced in
a specified number of seconds. For example, the command

pfctl -t bruteforce -T expire 86400

will remove <bruteforce> table entries which have not been referenced for 86400
seconds.

2. as security/expiretable and sysutils/expiretable, respectively

65

Giving spammers a hard time
At this point we’ve covered quite some ground, and I’m more than happy to
present something really useful: PF as a means to make spammers’ lives
harder. Based on our recent exposure to PF rulesets, understanding the
following /etc/pf.conf parts should be straighforward:

table <spamd> persist
table <spamd-white> persist
rdr pass on $ext_if inet proto tcp from <spamd> to \

{ $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
rdr pass on $ext_if inet proto tcp from !<spamd-white> to \

{ $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025

We have two tables, for now it’s sufficient to note their names and the fact
that these names have a special meaning in this context. SMTP traffic from
the addresses in the first table above plus the ones which are not in the
other table are redirected to a daemon listening at port 8025.

The application which uses these tables, spamd, is a fake SMTP daemon,
designed to waste spammers’ time and keep their traffic off our net. That’s
what lives at port 8025, and the last part of our session here will be
centered around how to make good use of that software.

Remember, you are not alone: blacklisting
The main point underlying the spamd design is the fact that spammers
send a large number of messages, and the probability that you are the first
person receiving a particular message is incredibly small. In addition, spam
is mainly sent via a few spammer friendly networks and a large number of
hijacked machines. Both the individual messages and the machines will be
reported to blacklists fairly quickly, and this is the data which eventually
ends up in the first table in our example.

List of black and grey, and the sticky tarpit
What spamd does to SMTP connections from addresses in the blacklist is to
present its banner and immediately switch to a mode where it answers
SMTP traffic 1 byte at the time. This technique, which is intended to waste

66

Giving spammers a hard time

as much time as possible on the sending end while costing the receiver
pretty much nothing, is called tarpitting. The specific implementation with
1 byte SMTP replies is often referred to as stuttering.

spamd also supports greylisting, which works by rejecting messages from
unknown hosts temporarily with 45n codes, letting messages from hosts
which try again within a reasonable time through. Traffic from well
behaved hosts, that is, senders which are set up to behave within the limits
set up in the relevant RFCs1, will be let through.

Greylisting as a technique was presented in a 2003 paper by Evan Harris2,
and a number of implementations followed over the next few months.
OpenBSD’s spamd aquired its ability to greylist in version OpenBSD 3.5,
which was released in May 2004. Starting with OpenBSD 4.1, spamd by
default runs in greylisting mode.

The most amazing thing about greylisting, apart from its simplicity, is that
it still works. Spammers and malware writers have been very slow to
adapt. We will see a few examples later.

Setting up spamd
With the necessary rules in place in your pf.conf, configuring spamd is
fairly straightforward3. You simply edit your spamd.conf (traditionally
stored in the /etc directory, but on OpenBSD 4.1 and newer the file has
migrated to /etc/mail), according to your own needs. The file itself offers
quite a bit of explanation, and the man page offers additional information,
but we will recap the essentials here.

1. The relevant RFCs are mainly RFC1123 and RFC2821. If you choose to join us greylisting
pedants, you will need to read these, if only for proper RFC-style background information.
Remember, temporary rejection is in fact an SMTP fault tolerance feature.
2. The original Harris paper and a number of other useful articles and resources can be found
at the greylisting.org (http://www.greylisting.org/) web site.
3. Note that on FreeBSD, spamd is a port, mail/spamd/. If you are running PF on FreeBSD 5.n
or newer, you need to install the port, follow the directions given by the port’s messages and
return here.
In particular, to use spamd’s greylisting features, you need to have a file descriptor file system
(see man 5 fdescfs) mounted at /dev/fd/. You do this by adding the following line to your
/etc/fstab:

fdescfs /dev/fd fdescfs rw 0 0

and making sure the fdescfs code is in your kernel, either compiled in or by loading the module
via the appropriate kldload command.

67

Giving spammers a hard time

One of the first lines without a # comment sign at the start contains the
block which defines the all list, which specifies the lists you actually use:

all:\
:becks:whitelist:

Here you add all black lists you want to use, separated by colons (:). If you
want to use whitelists to subtract addresses from your blacklist, you add
the name of the whitelist immediately after the name of each blacklist, ie
:blacklist:whitelist:.

Next up is a blacklist definition:

becks:\
:black:\
:msg="SPAM. Your address %A has sent spam within the last 24 hours":\
:method=http:\
:file=www.openbsd.org/spamd/traplist.gz

Following the name, the first data field specifies the list type, in this case
black. The msg field contains the message to display to blacklisted senders
during the SMTP dialogue. The method field specifies how spamd-setup
fetches the list data, here http. The other options are fetching via ftp,
from a file in a mounted file system or via exec of an external program.
Finally the file field specifies the name of the file spamd expects to receive.

The definition of a whitelist follows much the same pattern:

whitelist:\
:white:\
:method=file:\
:file=/etc/mail/whitelist.txt

but omits the message parameter since a message is not needed.

Choose your data sources with care

Enabling the suggested blacklists in the default as distributed spamd.conf could
lead to blacklisting of quite large blocks of the Internet, including several countries
such as Korea. I work in a company which actually does the odd bit of business
with Koreans, and consequently I needed to edit out that particular entry from our
configuration. You are the judge of which data sources to use, and using other
lists than the default ones is possible.

68

Giving spammers a hard time

Put the lines for spamd and the startup parameters you want in your
/etc/rc.conf or /etc/rc.conf.local, for example

spamd_flags="-v -G 2:4:864" # for normal use: "" and see spamd-setup(8)
spamd_grey=YES # use spamd greylisting if YES

Once again, on OpenBSD 4.1 onwards, the spamd_grey variable is
superfluous. If you want spamd to run in pure blacklist mode without
greylisting, you use the spamd_black variable to turn off greylisting and
enable blacklisting mode.

Note for that you can fine tune several of the greylisting related parameters
via spamd command line parameters. Check the spamd man page to see
what the parameters mean.

When you are done with editing the setup, you start spamd with the
options you want, and complete the configuration using spamd-setup.
Finally, you create a cron job which calls spamd-setup to update the tables
at reasonable intervals.

Once the tables are filled, you can view table contents using pfctl or other
applications. If you want to change or delete entries, you are advised to use
the spamdb utility instead of pfctl table commands. More about that later.

Note that the example above uses rdr rules which are also pass rules. If
your rdr rules do not include a ’pass’ part, you need to set up pass rules to
let traffic through to your redirection. You also need to set up rules to let
legitimate email through. If you are already running an email service on
your network, you can probably go on using your old SMTP pass rules.

Some early highlights of our spamd experience
What is spamd like in practical use? We started using spamd in earnest in
early December of 2004, after running spamassassin and clamav as parts of
the exim delivery process for a while. Our exim is configured to tag and
deliver messages with a spamassassin score in the interval from 5 to 9.99
points, while discarding messages with 10 points or more along with
malware carrying messages. As the autumn progressed, spamassassin’s
success rate had been steadily declining, letting ever more spam through.

When we put spamd into production, the total number of messages handled
and the number of messages handled by spamassassin decreased

69

Giving spammers a hard time

drastically. The number of spam messages which make it through untagged
is now stabilized at roughly five a day, based on a reporting population of a
handful of users.

If you start spamd with the -v command line option for verbose logging, the
logs start including a few more items of information in addition to the IP
addresses. With verbose logging, a typical log excerpt looks like this:

Oct 2 19:55:05 delilah spamd[26905]: (GREY) 83.23.213.115:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: disconnected after
0 seconds.
Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: connected (2/1)
Oct 2 19:55:06 delilah spamd[26905]: (GREY) 83.23.213.115:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Oct 2 19:55:06 delilah spamd[26905]: 83.23.213.115: disconnected after
1 seconds.
Oct 2 19:57:07 delilah spamd[26905]: (BLACK) 65.210.185.131:
<bounce-3C7E40A4B3@branch15.summer-bargainz.com> -> <adm@dataped.no>
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: From: Auto
lnsurance Savings <noreply@branch15.summer-bargainz.com>
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: Subject: Start
SAVlNG M0NEY on Auto lnsurance
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: To: adm@dataped.no
Oct 2 20:00:05 delilah spamd[26905]: 65.210.185.131: disconnected after
404 seconds. lists: spews1
Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: connected (1/0)
Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: disconnected after
0 seconds.
Oct 2 20:06:51 delilah spamd[26905]: 24.71.110.10: connected (1/1),
lists: spews1
Oct 2 20:07:00 delilah spamd[26905]: 221.196.37.249: connected (2/1)
Oct 2 20:07:00 delilah spamd[26905]: 221.196.37.249: disconnected after
0 seconds.
Oct 2 20:07:12 delilah spamd[26905]: 24.71.110.10: disconnected after
21 seconds. lists: spews1

The first three lines say that a machine connects, as the second active
connection, with one connection from a blacklisted host. The (GREY) and
(BLACK) before the addresses indicate greylisting or blacklisting status,
respectively. After 404 seconds (or 6 minutes, 44 seconds), the blacklisted
host gives up without completing the delivery. The following lines may be
the first ever contact from a machine, which is then greylisted.4

4. Note the rather curious local part (user name) of the address in the message which the
greylisted machine tries to deliver here. There is more to this story.

70

Giving spammers a hard time

At the time this tutorial was originally written, our preliminary conclusion
was that spamd was quite efficient in stopping spam. Unfortunately, along
the way we encountered some false positives. Indications are that the false
positives came from a few too broadly defined entries in the spews2 (spews
level 2) list. For now we have stopped using this list as a blacklist, without
a noticeable increase in the spam volume.

Now for what used to be the the climax of my spamd experience. One log
entry stood out for a long time:

Dec 11 23:57:24 delilah spamd[32048]: 69.6.40.26: connected (1/1),
lists: spamhaus spews1 spews2
Dec 12 00:30:08 delilah spamd[32048]: 69.6.40.26: disconnected
after 1964 seconds. lists: spamhaus spews1 spews2

This entry concerns a sender at wholesalebandwidth.com. This particular
machine made 13 attempts at delivery during the period from December
9th to December 12th, 2004. The last attempt lasted 32 minutes, 44
seconds, without completing the delivery.

I update the tutorial now and again, and recently I found a few more
entries which exceeded this:

peter@delilah:~$ grep disconnected /var/log/spamd | awk ’{print $9}’ \
| sort -rn | uniq -c | head

1 42673

1 36099

1 14714

1 10170

1 5495

1 3025

1 2193

1 1964

1 1872

1 1718

The first, at 42673 seconds, which is almost twelve hours,

Dec 21 14:22:44 delilah spamd[29949]: 85.152.224.147: connected (5/2)
Dec 21 14:22:46 delilah spamd[29949]: 85.152.224.147: connected (6/2)
Dec 21 14:22:47 delilah spamd[29949]: 85.152.224.147: disconnected
after 3 seconds.
Dec 22 02:13:59 delilah spamd[29949]: 85.152.224.147: disconnected
after 42673 seconds.

concerns a host which is apparently in a Spanish telecoms operator’s
network. The machine was probably infected by an extremely naive spam

71

Giving spammers a hard time

sending worm, which just took a long time waiting for the rest of the SMTP
dialogue. The next entries, at 10 hours, 1 minute, 39 seconds, 4 hours, 5
minutes and 14 seconds and 2 hours, 49 minutes and 30 seconds
respectively, seem to have behaved in much the same way.

Beating’em up some more: spamdb and
greytrapping

Behind the scenes, rarely mentioned and barely documented are two of
spamd’s helpers, the spamdb database tool and the spamlogd whitelist
updater, which both perform essential functions for the greylisting feature.
Of the two spamlogd works quietly in the background, while spamdb has
been developed to offer some interesting features.

Restart spamd to enable greylisting

If you followed all steps in the tutorial exactly up to this point, spamlogd has been
started automatically already. However, if your initial spamd configuration did not
include greylisting, spamlogd may not have been started, and you may experience
strange symptoms, such as your greylists and whitelist not getting updated
properly.

Under normal circumstances, you should not have to start spamlogd by hand.
Restarting spamd after you have enabled greylisting ensures spamlogd is loaded
and available too.

spamdb is the administrator’s main interface to managing the black, grey
and white lists via the contents of the /var/db/spamdb database.

Early versions of spamdb simply offered options to add whitelist entries to
the database or update existing ones (spamdb -a nn.mm.nn.mm) and to
delete whitelist entries (spamdb -d nn.mm.nn.mm) to compensate for
shortcomings in either the blacklists used or the effects of the greylisting
algorithms.

By the time the development cycle for OpenBSD 3.8 started during the first
half of 2005, spamd users and developers had accumulated significant

72

Giving spammers a hard time

amounts of data and experience on spammer behaviour and spammer
reactions to countermeasures.

We already know that spam senders rarely use a fully compliant SMTP
implementation to send their messages. That’s why greylisting works. Also,
as we noted earlier, not only do spammers send large numbers of messages,
they rarely check that the addresses they feed to their hijacked machines
are actually deliverable. Combine these facts, and you see that if a
greylisted machine tries to send a message to an invalid address in your
domain, there is a significant probability that the message is a spam, or for
that matter, malware.

Enter greytrapping
Consequently, spamd had to learn greytrapping. Greytrapping as
implemented in spamd puts offenders in a temporary blacklist, dubbed
spamd-greytrap, for 24 hours. Twenty-four hours is short enough to not
cause serious disruption of legitimate traffic, since real SMTP
implementations will keep trying to deliver for a few days at least.
Experience from large scale implementations of the technique shows that it
rarely if ever produces false positives5 . Machines which continue
spamming after 24 hours will make it back to the tarpit soon enough.

Your own traplist
To set up your own traplist, you use spamdb’s -T option. In my case, the
strange address I mentioned earlier6 was a natural candidate for inclusion:

peter@delilah:~$ spamdb -T -a wkitp98zpu.fsf@datadok.no

Sure enough, the spammers thought this was just as usable as almost two
years ago:

5. One prime example is Bob Beck’s "ghosts of usenet postings past" based traplist, which
rarely contains less than 20,000+ entries. The number of hosts varies widely and has been as
high as roughly 90,000. At the time of writing (mid February, 2007), the list typically contained
around 65,000 entries. While still officially in testing, the list was made publicly available on
January 30th, 2006. The list has to my knowledge yet to produce any false positives and is
available from http://www.openbsd.org/spamd/traplist.gz for your spamd.conf.
6. That address is completely bogus. It is probably based on a GNUS message-ID, which in
turn was probably lifted from a news spool or some unfortunate malware victim’s mailbox.

73

Giving spammers a hard time

Nov 6 09:50:25 delilah spamd[23576]: 210.214.12.57: connected (1/0)
Nov 6 09:50:32 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:50:40 delilah spamd[23576]: (GREY) 210.214.12.57:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Nov 6 09:50:40 delilah spamd[23576]: 210.214.12.57: disconnected
after 15 seconds.
Nov 6 09:50:42 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:50:45 delilah spamd[23576]: (GREY) 210.214.12.57:
<bounce-3C7E40A4B3@branch15.summer-bargainz.com> ->
<adm@dataped.no>
Nov 6 09:50:45 delilah spamd[23576]: 210.214.12.57: disconnected
after 13 seconds.
Nov 6 09:50:50 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:00 delilah spamd[23576]: (GREY) 210.214.12.57:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Nov 6 09:51:00 delilah spamd[23576]: 210.214.12.57: disconnected
after 18 seconds.
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: disconnected
after 12 seconds.
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:18 delilah spamd[23576]: (GREY) 210.214.12.57:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Nov 6 09:51:18 delilah spamd[23576]: 210.214.12.57: disconnected
after 16 seconds.
Nov 6 09:51:18 delilah spamd[23576]: (GREY) 210.214.12.57:
<bounce-3C7E40A4B3@branch15.summer-bargainz.com> ->
<adm@dataped.no>
Nov 6 09:51:18 delilah spamd[23576]: 210.214.12.57: disconnected
after 16 seconds.
Nov 6 09:51:20 delilah spamd[23576]: 210.214.12.57: connected (1/1),
lists: spamd-greytrap
Nov 6 09:51:23 delilah spamd[23576]: 210.214.12.57: connected (2/2),
lists: spamd-greytrap
Nov 6 09:55:33 delilah spamd[23576]: (BLACK) 210.214.12.57:
<gilbert@keyholes.net> -> <wkitp98zpu.fsf@datadok.no>
Nov 6 09:55:34 delilah spamd[23576]: (BLACK) 210.214.12.57:
<bounce-3C7E40A4B3@branch15.summer-bargainz.com> ->
<adm@dataped.no>

This log fragment shows how the spammer’s machine is greylisted at first
contact, and then clumsily tries to deliver messages to my greytrap address,
only to end up in the spamd-greytrap blacklist after a few minutes. By now
we all know what it will be doing for the next twenty-odd hours.

74

Giving spammers a hard time

Deleting, handling trapped entries
spamdb offers a few more options you should be aware of. The -T option
combined with -d lets you delete traplist mail address entries, while the -t
(lowercase) option comined with -a or -d lets you add or delete trapped IP
address entries from the database.

Exporting your list of currently trapped addresses can be as simple as
putting together a simple one-liner with spamdb, grep and a little
imagination.

The downside: some people really do not get it
We have already learned that the main reason why greylisting works is
that any standards compliant mail setup is required to retry delivery after
some “reasonable” amount of time. However as Murphy will be all too
happy to tell you, life is not always that simple.

For one thing, the first email message sent from any site which has not
contacted you for as long as the greylister keeps its data around will be
delayed for some random amount of time which depends mainly on the
sender’s retry interval. There are some circumstances where avoiding even
a minimal delay is desirable. If you for example have some infrequent
customers who always demand your immediate and urgent attention to
their business when they do contact you, an initial delivery delay of what
could be several hours may not be optimal.

In addition, you are bound to encounter misconfigured mail servers which
either do not retry at all or retry too quickly, perhaps stopping delivery
retries after a few attempts. As luck would have it, in your case one of these
is likely to be at an important customer’s site, run by an incompentent who
will not listen to reason or possiby a site owned and operated by your boss’
boyfriend.

Finally, there are some sites which are large enough to have several
outgoing SMTP servers, and not play well with greylisting since they are
not guaranteed to retry delivery of any given message from the same IP
address as the last delivery attempt for that message. Even though those
sites can sincerely claim to comply with the retry requirements, since the
RFCs do no state that the new delivery attempts have to come from the
same IP address, it’s fairly obvious that this is one of the few remaining
downsides of greylisting.

75

Giving spammers a hard time

If you need to compensate for such things in your setup, it is fairly easy to
do. One useful approach is to define a table for a local whitelist, to be fed
from a file in case of reboots:

table <localwhite> file "/etc/mail/whitelist.txt"

To make sure SMTP traffic from the addresses in the table is not fed to
spamd, you add a no rdr rule at the top of your redirection block:

no rdr proto tcp from <localwhite> to $mailservers port smtp

Once you have these changes added to your rule set, you enter the
addresses you need to protect from redirection into the whitelist.txt file,
then reload your rule set using pfctl -f. You can then use all the
expected table tricks on the <localwhite> table, including replacing its
content after editing the whitelist.txt file. See the chapter called Tables
make your life easier or man pfctl for a few pointers.

Conclusions from our spamd experience
Summing up, selectively used, blacklists combined with spamd are
powerful, precise and efficient spam fighting tools. The load on the spamd
machine is minimal. On the other hand, spamd will never perform better
than its weakest data source, which means you will need to monitor your
logs and use whitelisting when neccessary.

It is also perfectly feasible to run spamd in a pure greylisting mode, with no
blacklists. In fact some users report that a purely greylisting spamd
configuration is not significantly less effective than blacklising
configurations as spam fighting tools7.

For our main blacklist, we ended up using Bob Beck’s traplist8, which is
generated using "the ghosts of USENET postings past", that is, the spamd’s
greytrapping feature and addresses which are not expected to receive
legitimate mail. What makes this list stand out is that Bob set up the

7. One such report is Steve Williams’ October 20th, 2006 message to the OpenBSD-misc mail-
ing list (http://marc.info/?l=openbsd-misc&m=116136841831550&w=2), where he reports that
a pure greylisting configuration immediately rid the company he worked for of approximately
95% of their spam load.
8. The list is hosted at http://www.openbsd.org/spamd/traplist.gz.

76

Giving spammers a hard time

system to remove addresses automatically after 24 hours. This means that
you get an extremely low number of false positives.

Once you’re happy with your setup, you could try introducing local
greytrapping. This is likely to catch a few more undesirables, and of course
it’s good clean fun.9

9. You can find my field notes from a recent greytrapping experiment in my blog at
bsdly.blogspot.com (http://bsdly.blogspot.com), starting with the entry dated July 9, 2007
(http://bsdly.blogspot.com/2007/07/hey-spammer-heres-list-for-you.html).

77

PF - Haiku
Finally, an indication of the level of feeling inspired by PF in its users is in
order. On the PF mailing list, a message with the subject of "Things pf can’t
do?" appeared in May 2004. The message had been written by someone who
did not have a lot of firewalls experience, and who consequently found it
hard to get the setup he or she wanted.

This, of course, lead to some discussion, with several participants saying
that if PF was hard on a newbie, the alternatives were certainly not a bit
better. The thread ended in the following haiku of praise from Jason Dixon,
which is given intact as it came, along with Jason’s comments:

Compared to working with iptables, PF is like this haiku:

A breath of fresh air,
floating on white rose petals,
eating strawberries.

Now I’m getting carried away:

Hartmeier codes now,
Henning knows not why it fails,
fails only for n00b.

Tables load my lists,
tarpit for the asshole spammer,
death to his mail store.

CARP due to Cisco,
redundant blessed packets,
licensed free for me.

Jason Dixon, on the PF email list, May 20th, 2004
(http://marc.info/?l=openbsd-pf&m=108507584013046&w=2)

78

References
OpenBSDs web http://www.openbsd.org/

OpenBSDs FAQ, http://www.openbsd.org/faq/index.html

PF User Guide http://www.openbsd.org/faq/pf/index.html

Daniel Hartmeier’s PF pages, http://www.benzedrine.cx/pf.html

Daniel Hartmeier: Design and Performance of the OpenBSD Stateful
Packet Filter (pf), http://www.benzedrine.cx/pf-paper.html (presented at
Usenix 2002)

Nate Underwood: HOWTO: Transparent Packet Filtering with OpenBSD,
http://ezine.daemonnews.org/200207/transpfobsd.html

Randal L. Schwartz: Monitoring Net Traffic with OpenBSD’s Packet Filter,
http://www.samag.com/documents/s=9053/sam0403j/0403j.htm

Unix.se: Brandvägg med OpenBSD,
http://unix.se/Brandv%E4gg_med_OpenBSD

Randal L. Schwartz: Blog for Thu, Jan 29, 2004,
http://use.perl.org/~merlyn/journal/17094

RFC 1631, "The IP Network Address Translator (NAT)", May 1994
http://www.ietf.org/rfc/rfc1631.txt?number=1631

RFC 1918, "Address Allocation for Private Internets", February 1996
http://www.ietf.org/rfc/rfc1918.txt?number=1918

The FreeBSD PF home page, http://pf4freebsd.love2party.net/

Peter Postma’s PF on NetBSD pages, http://nedbsd.nl/~ppostma/pf/

Marcus Ranum: The Six Dumbest Ideas in Computer Security
(http://www.ranum.com/security/computer_security/editorials/dumb/index.html),
September 1, 2005

Kjell Jørgen Hole WiFi courseware,
http://www.kjhole.com/Standards/WiFi/WiFiDownloads.html, also see
wifinetnews.com (http://wifinetnews.com/archives/cat_security.html); also
The Unofficial 802.11 Security Web Page
(http://www.drizzle.com/~aboba/IEEE/) comes higly recommended.

Greylisting.org greylisting.org (http://www.greylisting.org/) is the home of
all things greylisting, with links to numerous articles and other useful

79

References

information.

Evan Harris: The Next Step in the Spam Control War: Greylisting
(http://greylisting.org/articles/whitepaper.shtml) (the original greylisting
paper)

Peter N. M. Hansteen: The silent network: Denying the spam and malware
chatter using free tools
(http://home.nuug.no/~peter/malware-talk/silent-network.pdf) - paper
presented at BSDCan 2007 which puts spamd into a slightly wider spam
and malware fighting context along with some data on spammer behavior

Peter N. M. Hansteen: The Book of PF
(http://www.nostarch.com/pf_hansteen.htm), No Starch Press 2007, is an
expanded and extensively rewritten followup to the tutorial, and covers a
range of advanced topics in addition to those covered here.

80

Where to find the tutorial on the web
Work in progress edition:

Several formats http://home.nuug.no/~peter/pf/

This is where updated versions will appear more or less in the natural
course of tinkering, in between events. Please let me know if you want to be
told of future updates.

If you enjoyed this: Buy OpenBSD CDs and
other items, donate!

If you have enjoyed this tutorial or found it useful, please go to the
OpenBSD.org Orders page (http://www.openbsd.org/orders.html) and buy
CD sets, or for that matter, support further development work by the
OpenBSD project via a donation (http://www.openbsd.org/donations.html).

If you are in a position to donate hardware, make sure you check OpenBSD
developers’ hardware wishlist at http://www.openbsd.org/want.html and get
in contact with the right people in the project to arrange the details.

If you’ve taken this in at a conference, there might even be an OpenBSD
booth nearby where you can buy CDs, T-shirts or other items.

Remember, even free software takes real work and real money to develop
and maintain.

The Book of PF

The Book of PF (http://www.nostarch.com/pf_hansteen.htm), by the same author,
was published by No Starch Press at the end of 2007. The book is an expanded
and extensively rewritten followup to the tutorial, and covers a range of advanced
topics in addition to those covered here. You can buy it through the first link and let
me have a slightly larger amount for that copy and sooner, or you could go to The
OpenBSD Bookstore (http://www.openbsd.org/books.html#book7) and let the
OpenBSD project get a cut, too.

81

	
	Firewalling with OpenBSD's PF packet filter
	Table of Contents
	Before we start
	PF?
	Packet filter? Firewall?
	NAT?
	PF today
	BSD vs Linux - Configuration
	Simplest possible setup (OpenBSD)
	Simplest possible setup (FreeBSD)
	Simplest possible setup (NetBSD)
	First rule set - single machine
	Slightly stricter
	Statistics from pfctl
	A simple gateway, NAT if you need it
	Gateways and the pitfalls of in, out and on
	What is your local network, anyway?
	Setting up

	That sad old FTP thing
	FTP through NAT: ftp-proxy
	FTP, PF and routable addresses: ftpsesame, pftpx and ftp-proxy!
	ftp-proxy, new style

	Making your network troubleshooting friendly
	Then, do we let it all through?
	The easy way out: The buck stops here
	Letting ping through
	Helping traceroute
	Path MTU discovery

	Network hygiene: Blocking, scrubbing and so on
	block-policy
	scrub
	antispoof
	Handling non-routable addresses from elsewhere

	A web server and a mail server on the inside
	Taking care of your own - the inside

	Tables make your life easier
	Logging
	Taking a peek with tcpdump
	Other log tools you may want to look into
	But there are limits (an anecdote)

	Keeping an eye on things with pftop
	Invisible gateway - bridge
	Directing traffic with ALTQ
	ALTQ - prioritizing by traffic type
	So why does this work?

	ALTQ - allocation by percentage
	ALTQ - handling unwanted traffic

	CARP and pfsync
	Wireless networks made simple
	A little IEEE 802.11 background
	WEP (Wired Equivalent Privacy)
	WPA (WiFi Protected Access)

	Setting up a simple wireless network

	An open, yet tightly guarded wireless network with authpf
	Turning away the brutes
	expiretable tidies your tables

	Giving spammers a hard time
	Remember, you are not alone: blacklisting
	List of black and grey, and the sticky tarpit
	Setting up spamd
	Some early highlights of our spamd experience
	Beating'em up some more: spamdb and greytrapping
	Enter greytrapping
	Your own traplist
	Deleting, handling trapped entries
	The downside: some people really do not get it

	Conclusions from our spamd experience

	PF - Haiku
	References
	Where to find the tutorial on the web
	If you enjoyed this: Buy OpenBSD CDs and other items, donate!

