

OPTIMIZING MYSQL™ SERVER

ON SUN™ X64 SERVERS AND
STORAGE

Luojia Chen, ISV Engineering

Sun BluePrints™ Online — February 2008

Part No 820-4498-10
Revision 1.0, 2/20/08
Edition: February 2008

Sun Microsystems, Inc.

Table of Contents

Chapter 1. Introduction

. .1

Sun™ Platforms and MySQL™—An Integrated Solution Stack 1

Chapter 2. Steps for Optimizing MySQL Server

. .4

Step 1: Define and Assess . 4

Data Types . 4

User Connections . 5

Regulatory Requirements . 6

Service Level Agreement Requirements . 6

Step 2: Preparation and Installation . 6

Step 3: Optimize for I/O Types . 7

Step 4: Optimize MySQL Memory and CPU Options . 7

Reduce CPU and Memory Uses . 7

Optimize Tables . 8

Identify Common Queries . 8

Select and Configure the MySQL Storage Engine . 8

Step 5: Optimize File Systems . 11

Synchronize the File System I/O Engine Read/Write Options. 11

Reduce Double Buffers and Flushes to Disk . 11

Step 6: Benchmark and Adjust . 11

Chapter 3. Optimizing MySQL on Sun Fire X4100 M2 Servers

. 12

MySQL sysbench Benchmark Test Environment Configuration 12

Sun StorageTek™ 2530 Array Configuration. 12

MySQL Database Server Installation . 12

MySQL Settings. 13

Benchmark Results . 13

32 User Read-Only Test Results . 14

32 User Read/Write Test Results . 15

Chapter 4. For More Information

 . 17

About the Author . 17

References . 17

Ordering Sun Documents . 17

Accessing Sun Documentation Online . 17

1

Introduction

 Sun Microsystems, Inc.

Chapter 1

Introduction

Today business is increasingly done on the Web, and thousands of new people,

applications, businesses, and services are coming online daily. In fact, Wiki pages,

mashups, social networking sites, and online stores are at the forefront of Web 2.0

technologies. As more businesses, services, and sites go online and gain in popularity,

enterprises must deal with the massive increases in data generated by customer

relationship management (CRM) and enterprise resource planning (ERP) applications,

as well as collected community knowledge and shared information.

When information is readily available, it can help make the organization smarter and

more effective at solving business challenges. As a result, applications need fast,

efficient, and flexible database environments that can scale and adapt as more data

enters the system. In turn, Web and e-commerce companies need easy access to an

open, integrated platform—complete LAMP (Linux, Apache, MySQL, Perl) or SAMP

(Solaris™ Operating System, Apache, MySQL, Perl) application stack, open source

database, and high-performance servers and storage systems—capable of supporting

high traffic, high scale Web sites. This Sun BluePrints™ article provides an overview of

the integrated Sun™ platform, outlines the steps for optimizing MySQL™ Server on Sun

x64 servers, and describes benchmark results for solutions with Sun Fire™ X4100 servers.

Sun™ Platforms and MySQL™—An Integrated Solution Stack

With the addition of MySQL to its software portfolio, Sun now offers an integrated

LAMP or SAMP software stack that runs on the entire range of Sun’s x64 servers and

storage systems. Together, these hardware and software components give enterprises

the ability to deploy on open, scalable platforms with low total cost of ownership.

Figure 1-1. Sun x64 servers, storage arrays, operating systems, and MySQL provide
an integrated foundation for Web and e-commerce environments

2

Introduction

Sun Microsystems, Inc.

• Sun Fire x64 servers

With a modular approach that ranges from very low cost single rackmount servers

to integrated solutions, the Sun Fire x64 server family gives IT organizations the

flexibility to put computing resources where they are needed most. Combining

Sun’s network computing expertise with the performance and power advantages

of AMD Opteron™ and Intel® Xeon® processors, the Sun Fire x64 server family

offers high speed and energy efficiency to database and Web 2.0 deployments on

an open platform.

All Sun Fire x64 servers can run the Solaris 10 Operating System or Linux

environment and the full LAMP or SAMP software stack without modification. In

addition, Sun Fire x64 servers incorporate a variety of performance and availability

features that support business-critical Web deployments. For example, Sun Fire

x64 servers with AMD Opteron processors utilize HyperTransport technology.

Providing a scalable, direct connection between processors, I/O subsystems, and

other chip sets, HyperTransport technology reduces the number of buses in the

system, which in turn helps reduce transaction overhead to improve database

transaction and query performance.

• Sun StorageTek™ disk arrays

Storage is a key component of any database environment. Sun StorageTek arrays

scale from media trays to workgroup, mid-range, and datacenter arrays, and

network attached storage. The SMI-S compliant, Web-based Sun StorageTek

Common Array Manager software helps reduce the complexity of array

installation, configuration, and management. Online capacity expansion, data

volume control creation, and host to volume mapping features make it easy to

modify storage configurations.

Storage systems must perform well if database environments are to meet service

level agreements and other business priorities. Sun storage systems support a

variety of drive sizes, capacities, and speeds. Since more drive spindles can help

increase database write performance, Sun storage systems can pack high density

into a small footprint, and expansion options are often available. Dual active RAID

controllers and active-active configuration support available on many Sun

StorageTek arrays helps enable load balancing and failover for improved

performance and availability.

• A choice of operating systems

More than ever before, businesses are looking to standardize on operating system

and server hardware architectures to help reduce management costs. While all

Sun Fire x64 servers come pre-loaded with the industry-leading Solaris 10

Operating System at no cost, they also can run virtually any operating system —

with full support from Sun for Red Hat and SuSE versions of Linux, as well as

Microsoft Windows Server and VMware.

3

Introduction

 Sun Microsystems, Inc.

• MySQL Server

One of the world’s most popular open source databases, MySQL Server powers

many of the largest, high volume Web sites and business-critical systems. A fully

integrated, transaction safe, ACID compliant database with commit, rollback,

crash recovery, and row level locking capabilities, MySQL Server is a reliable

foundation for e-commerce, online transaction processing (OLTP), and data

warehousing solutions.

4

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

Chapter 2

Steps for Optimizing MySQL Server

Optimizing MySQL Server takes planning and understanding of the application running

on the database, the service level agreements (SLAs) required, and the type of I/O

needed for the application. However, MySQL Server can be used for a wide variety

applications and data types, and one size does not fit all for optimization parameters

and settings. Figure 2-1 and the sections that follow outline a way to evaluate the right

settings for an application.

Figure 2-1. Steps for optimizing MySQL Server on Sun platforms

Step 1: Define and Assess

Understanding the data in use is the first step in optimizing the infrastructure

underneath MySQL Server. In particular, the nature of the expected read/write activity

and ratios is vital to establishing the settings needed to help optimize solutions. Finding

the optimal buffers and caches that can help reduce excess memory and I/O traffic

based on data characteristics is key.

Data Types

Knowing the data type(s) in use aid in understanding what type of pipeline to create to

optimize data transfers and data movement though the server, as well as reduce

memory usage, optimize read/write operations out of cache to improve performance in

and out of caches. Each data type requires different pipelining through the servers and

on the storage array (Table 2-1).

Define
and

Assess

Prep
and

Install

Optimize
for

I/O Types

Optimize
Memory &
I/O Engine

Optimize
File

System

Benchmark
and

Adjust

What Types
of Data

Select Server
Bundle

Baseline
I/O loads

Reduce
CPU and

Memory Load

Sync File
System & I/O

Engine Buffers

Run
Benchmarks

How Many
User

Connections?

Install
Server(s),
2530 & OS

Group
I/O Types
on Server

Optimize
Tables
for I/O

Reduce
Buffers Flushes

to Disk

Adjust
Parameters

Regulatory
Requirements

Protect, Migrate
& Validate
the Data

Leverage
I/O Type
Settings

Identify
Leading

Query Types

What SLAs
Requirements?

Load
MySQL

Select
MySQL

I/O Engine

1 2 3 4 5 6

5

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

Table 2-1. Data types and pipelining parameters

User Connections

Knowing the anticipated number of user connections up front enables a better

understanding of:

• The overall workload on the server

• The MySQL storage engine to load

• How to set the buffers and caches

• How to distribute I/O across the SAS links to the storage array

• How to configure the array to support applications

MySQL Server runs as a single process, multithreaded application that has one master

thread with highest priority to control the server. However, MySQL Server also creates a

dedicated user thread running at normal priority in the thread pools for each

simultaneous client request. This dedicated user thread processes the user request and

sends back the result to each client once the result is ready. An additional, single user

thread waits for input from the console, and a group of utility threads running at lower

priority handle some background tasks.

Currently, MySQL Server exhibits limited scalability with the number of concurrent user

threads handling client requests. Performance scales efficiently with each additional

user thread until it reaches the peak performance point. Once the peak is reached,

increasing the number of user connections can decrease MySQL Server performance

due to thread concurrency contention. For applications that can tune the number of

user connections, it is important to determine the optimum number of user

connections for peak performance for different workloads.

Operation Block Size Mode

Write Small Random

Write Large Random

Write Small Sequential

Write Large Sequential

Read Small Random

Read Large Random

Read Small Sequential

Read Large Sequential

6

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

Regulatory Requirements

It is important to consider regulatory requirements prior to planning the optimization

effort. The answers to several questions can aid the process, including:

• Is the application subject to specific regulatory requirements?

• Is the application subject to security or access control requirements?

• Are there any business continuity needs to consider?

• Does the data need to be stored in a dedicated LUN?

• Does the data need to replicated synchronously or asynchronously?

• Does the data need to be replicated locally or remotely?

Service Level Agreement Requirements

Service level agreements help set the business continuance requirements for

applications, and drive several data and storage requirements, including:

• Type of storage and data protection model to implement on the array

• Data backup procedures

• Frequency of backups and snapshots

Step 2: Preparation and Installation

Preparing and installing the Sun servers and the Sun StorageTek 2530 array starts with

five basic tasks.

• Select server platforms

MySQL applications under 1 TB in size that do not require highly available

configurations can use a single Sun Fire X4100 M2 server and a Sun StorageTek

2530 array loaded with 73 GB disk drives. Databases over 1 TB in size that require

highly available servers can use two Sun Fire X4200 M2 servers, each with two SAS

host bus adapters connected to a Sun StorageTek 2530 array loaded with 146 GB

disk drives.

• Determine the physical server location

It is important to find the right rack space, power, and cooling to support the

servers, storage systems, and any required switches or other infrastructure

components.

• Install the servers, storage systems, and Solaris Operating System

Install the Sun Fire X4100 M2 or Sun Fire X4200 M2 server(s), the Sun StorageTek

2530 array, and the Solaris 10 Operating System. In addition, set up the basic LUN

and RAI configuration to hold new or migrated data. Detailed installation and

configuration information can be found in the product guides located at

http://docs.sun.com/app/docs/prod/5b03d0ed-216d-11db-a023-080020a9ed93

.

7

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

• Protect, migrate, and validate data

If the hardware is replacing an existing server, be sure to make a complete backup

of the dataset to be moved. The backup can be placed on another disk array for

rapid access. Next, migrate the data from the existing storage system to the Sun

StorageTek 2530 array. Finally, validate that the dataset was moved properly,

especially if the backup and original copies are to be erased.

• Load MySQL

The next step in the optimization process is to load MySQL onto the Sun Fire X4100

M2 or Sun Fire X4200 M2 server(s) and test access to the data on the storage array.

Step 3: Optimize for I/O Types

Optimizing I/O requires baselining I/O loads, grouping I/O types, and leveraging I/O

settings.

•

Baseline I/O loads

 — First, baseline current workloads and I/O types on the server.

Doing so helps measure optimizations during the final benchmarking phase.

•

Group I/O types

 — Optimizations for small, random reads and writes are not the

same as those for larger, sequential reads and writes. If multiple I/O types are in

use, try to segment them on multiple servers or virtual machines.

•

Leverage I/O settings

 — Grouping similar I/O types together enables the proper

cache, files system settings, and MySQL storage engines to be used for

optimization.

Step 4: Optimize MySQL Memory and CPU Options

The next step in the optimization process is to reduce unneeded functions that steal

memory and CPU performance, including extra buffers that cause additional memory

moves and consume CPU resources.

Reduce CPU and Memory Uses

One of the key advantages of open source software solutions is the ability to optimize

the software for different needs. Use the

mysql>

show

 variables to help identify the

configuration and system variables. The values for these variables can be changed in

the

my.cnf

 configuration file. In addition, the

mysql

 startup options can be used to

remove or adjust the following MyISAM memory-related variables if only Innodb tables

are in the system:

• bulk_insert_buffer_size

• key_buffer_size

• key_cache_age_threshold, key_cache_block_size, key_cache_division_limit

• read_buffer_size, read_rnd_buffer_size

8

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

Optimize Tables

Make sure the tables in the database are optimized for the type of queries and sorts

required by the application.

Identify Common Queries

The MySQL query cache stores the identical

SELECT

 queries issued by clients to the

database server. This makes it possible to locate and re-issue the same queries without

repetitive hard parsing activities. MySQL also stores the query result set in the query

cache, which can reduce significantly the overhead of creating complex result sets for

queries from the disk or memory caches, reducing both physical and logical I/O. This

can improve application performance when repetitive queries of products are being

issued. Some cache guidelines include:

• If a high value for

qcache_hits

 is seen compared to the total queries at runtime,

or a low value for

qcache_free_memory

 is seen via the

mysql>show

status

command, it might be necessary to increase the value of the

query_cache_size

parameter accordingly. Otherwise, decrease the value of the

query_cache_size

parameter to save memory resources for other MySQL cache buffers.

• If

qcache_hit

 is 0 during runtime, turn off the query cache by setting

query_cache_type

 to 0, and set

query_cache_size

 to 0, to reduce the overhead

associated with having the query cache enabled and free memory resources.

• If the application uses many simple

SELECT

 queries without repeating, enabling

the query cache can impede performance by five to ten percent. However, setting

the query cache can help applications with many repeated

SELECT

 queries to

improve performance by 200 percent or more.

• Keeping most of the database tables open can be expensive. The optimum value

for the

table_cache

 parameter is directly related to the number of tables that

need to be open simultaneously in order to perform multiple-table joins. The

table_cache

 value should be equal to no less than the number of concurrent

connections times the largest number of tables involved in any one join. Typically,

1,024 is good value for applications with a couple of hundred tables. Each

connection has its own entry. Check the

Open_tables

 status variable to see if it is

large compared to the

table_cache

 setting.

Select and Configure the MySQL Storage Engine

MySQL has many variables that can be adjusted to change MySQL behavior or

performance characteristics. Because MySQL includes several storage engines,

including MyISAM, InnoDB, HEAP, and Berkeley DB (BDB), some variables apply to only

one storage engine, and other variables are used in the SQL layer applying to all storage

engines. In addition, several memory-related variables apply to all storage engines.

9

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

Table 2-2 describes some of the MySQL storage engine variables and suggested settings

and guidelines.

Table 2-2. MySQL storage engine variable descriptions and setting guidelines

Several MySQL Innodb memory-related variables are also important.

•

innodb_buffer_pool_size

The

innodb_buffer_pool_size

 variable is used to set the amount of memory

allocated to Innodb data and the index buffer cache. MySQL does not access disks

directly. It reads data into the internal buffer cache, reads and writes blocks, and

flushes the changes back to the disk. If the server requests data that is available in

the cache, the data is processed immediately. Otherwise, the operating system

requests that the data be loaded from disk. The larger the cache size, the more

disk accesses can be avoided. For example, increasing

innodb_buffer_pool_size

from 4 GB to 5 GB on Sun Fire T2000 servers with 8 GB RAM for the sysbench I/O

bound workload test can improve performance by approximately 11 percent.

•

innodb_additional_mem_pool_size

The

innodb_additional_mem_pool_size

 variable sets the amount of memory

allocated to the buffer that stores the InnoDB internal data dictionary and other

internal data structures. Because this parameter does not affect performance

significantly, it can be set to 20 MB for sysbench OLTP testing. Note that more

memory should be allocated for applications with higher table counts.

Variable Description and Guidelines

join_buffer_size
The buffer used for full joins. In case where there are
large joins without indexes, increase this buffer size
to improve efficiency.

sort_buffer_size
The buffer used for the sort result set allocated by
each thread. Use of this buffer can speed ORDER BY
and GROUP BY queries.

query_cache_size Set this variable to a nonzero value to enable query
caching.

query_cache_limit The maximum size for a cached result set. Larger
result sets are not cached.

query_cache_min_res_unit

Specifies the minimum size for the memory blocks
allocated by the query cache. When an application
has many queries with small results, the 4 KB default
block size can lead to memory fragmentation.
Decreasing the block size to 2 KB or 1 KB might
improve performance. For large query result sets,
increasing the block size to 8 KB, 16 KB or more can
speed performance.

query_cache_type 0=OFF, 1=ON

10

Steps for Optimizing MySQL Server

 Sun Microsystems, Inc.

• innodb_log_buffer_size

The

innodb_log_buffer_size

 variable sets the amount of memory allocated to

the buffer that store InnoDB write-ahead log entries. For large transactions, if

innodb_flush_log_at_trx_commit

 is set to one before the log buffer is flushed

on each transaction commit, the log can be loaded into the log buffer instead of

flushing to the disk in the background to reduce disk I/O. If large log I/O is seen via

the

show

innodb

status

 output at runtime, a larger

innodb_log_buffer_size

parameter value likely is needed. Since the sysbench OLTP I/O bound workload

does not perform long transactions, it is not necessary to waste memory resources

by setting a higher value for the log buffer. Set the size to 8 MB.

Other MySQL Innodb variables can impact I/O performance.

•

innodb_flush_log_at_trx_commit

InnoDB flushes the transaction log to disk in the background approximately once

per second. By default, the

innodb_flush_log_at_trx_commit

 parameter

variable is set to one to flush the log to the disk on each transaction commit in

order to help avoid transaction loss during a MySQL, operating system, or

hardware crash. For workloads running with many short transactions, disk writing

can be reduced by setting the

innodb_flush_log_at_trx_commit

 parameter with

different values. Setting this value to zero results in no log flushing on each

transaction commit. While doing so can reduce disk I/O and improve

performance, transactions can be lost in the event of a MySQL crash or failure.

Setting

innodb_flush_log_at_trx_commit

 to zero during read-only tests can

improve performance by 4 percent. When the value is set to two, the log flushes to

the operating system cache (file system cache) instead of the disk on each

transaction commit. While setting can also reduce disk I/O, performance is

slightly slower than when the value is set to zero. However, transaction loss is less

likely in the event of operating system or hardware failures.

•

innodb_log_file_size

InnoDB writes to the log files in a circular fashion. If the log file reaches the

configuration limit set by the

innodb_log_file_size

 parameter, the checkpoint

operation is executed at once to flush the modified database pages. The

innodb_log_file_size

 parameter is very important for write-intensive workloads

and large data sets. While larger sizes reduce disk I/O in checkpointing and help

improve performance, recovery times are also increased. The

innodb_log_file_size

 parameter must be increased when large page writes are

seen in the

BUFFER

 POOL AND MEMORY portion of the show innodb status output.

Step 5: Optimize File Systems
The MySQL storage engine and I/O types in use indicate how the file system should be

configured to eliminate double buffering and disk flushing.

11 Steps for Optimizing MySQL Server Sun Microsystems, Inc.

Synchronize the File System I/O Engine Read/Write Options

File system performance has a significant impact on overall system performance,

particularly when running I/O bound workloads with a database size that is larger than

system memory. Strategies for configuring the file system for improved performance

depend on the workload access pattern. For sequential workloads, increasing the file

system cluster size to enable reading ahead or writing back more data from or to the

disk can help reduce the total number of I/O operations. For random workloads,

reducing the file system cluster size to match the innodb I/O size is often optimal.

Reduce Double Buffers and Flushes to Disk

Review the buffering model of the MySQL storage engine to remove double buffering.

Double buffering typically occurs when the file system and I/O engine are caching data,

causing extra memory moves and increased CPU cycles. Different versions of MySQL can

mitigate this issue in different ways. For MySQL 5.0.42 and 5.1.18 and earlier, mount

UFS with the forcedirectio option. For later MySQL 5.0.x and 5.1.x releases, directio

can be enabled in the my.cnf file by setting innodb_flush_method to O_DIRECT.

Step 6: Benchmark and Adjust
The last step in the optimization process is to put everything together and make final

adjustments. Using the baseline established, run identical tests to measure

improvement. While additional tuning can help, this process helps ensure

organizations obtain optimal results from the solution.

12 Optimizing MySQL on Sun Fire™ X4100 M2 Servers Sun Microsystems, Inc.

Chapter 3

Optimizing MySQL on Sun Fire™ X4100 M2 Servers

Understanding how a system can perform under load conditions is key to ensuring

desired performance characteristics can be met during peak load. Sysbench is a

modular, cross-platform, multithreaded tool for evaluating a system running a

database under intensive load conditions. In particular, sysbench enables database

server performance to be stressed for online transaction processing workloads.

MySQL sysbench Benchmark Test Environment Configuration
In order to understand the performance characteristics of MySQL in on Sun platforms,

Sun engineers tested a Sun Fire X4100 M2 server running the Solaris 10 Operating

System and MySQL using the sysbench tool. Table 3-1 lists the hardware and software

configuration used for the benchmark tests.

Table 3-1. Hardware and software test configuration

Sun StorageTek™ 2530 Array Configuration

The test effort used the default storage CAMS profile for configuring the volume with

RAID level 5. The default 512 KB segment size was used, and read-ahead mode was

enabled.

MySQL Database Server Installation

The following commands were used to install the MySQL database server.

Description Configuration

Server Sun Fire X4100 M2 server • Four 2.8 MHz CPUs
• 7,680 MB memory

Storage Sun StorageTek 2530 array • 1,273 GB 15K SAS drives
• RAID-5
• 1 storage group/host
• 2 storage controllers
• PCI-X SAS host bus adapter

Software Operating System • Solaris 10 Operating System 6/06

Database Software • MySQL Database Server 5.0.45

Test Applications • sysbench

shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db
shell> chmod -R 777 *
shell> bin/mysqld_safe --user=mysql &

13 Optimizing MySQL on Sun Fire™ X4100 M2 Servers Sun Microsystems, Inc.

The following commands were used to install the sysbench test software.

The following commands were used to load a 100 million row test database.

MySQL Settings

The following settings in the mysqld file were used during the testing effort.

Benchmark Results
The sysbench tests conducted performed read-only and read/write tests with two to

256 user connections. The following sections summarize the results achieved.

shell> cd /sysbench-version
shell> ./configure
shell> make
shell> make install

shell> sysbench –test=oltp –oltp-table-size=100000000 –mysql-
db=sbtest100m –max-requests=0 prepare

port = 3306
socket = /tmp/mysql.sock
basedir = /usr/local/mysql
datadir = /usr/local/mysql/data
log-error = /data/error.txt
user=root
skip-locking
max_connections = 3000
table_cache = 1024
max_allowed_packet = 1M
sort_buffer_size = 64K
thread_cache = 8
thread_concurrency = 16
query_cache_size = 0M
query_cache_type = 0
default-storage-engine = innodb
transaction_isolation = REPEATABLE-READ
tmp_table_size = 1M
innodb_data_file_path = ibdata1:100M:autoextend
innodb_buffer_pool_size = 5500M
innodb_additional_mem_pool_size = 20M
innodb_log_file_size =1900M
innodb_log_buffer_size = 8M
innodb_flush_log_at_trx_commit =1
innodb_lock_wait_timeout = 300
innodb_max_dirty_pages_pct = 90
innodb_thread_concurrency =16

14 Optimizing MySQL on Sun Fire™ X4100 M2 Servers Sun Microsystems, Inc.

32 User Read-Only Test Results

A sysbench OLTP I/O bound read-only test was performed with 32 user connections on

the Sun Fire X4100 M2 server. Figure 3-1 shows the MySQL performance improvement

after tuning the Innodb data and index buffer size, and tuning the UFS file system on

the Solaris 10 OS with maxcontig settings and directio.

Figure 3-1. Test results for sysbench OLTP I/O bound read-only test with 32 user
connections

Table 3-2 and Figure 3-2 depict the test results for a sysbench OLTP I/O bound read-only

test with two to 256 user connections.

Table 3-2. Test results

Number of User Connections Transactions/Second

2 104.73

4 251.33

8 451.56

16 555.64

32 577.96

64 563.84

128 558.66

256 519.96

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

T
ra

ns
ac

tio
ns

/S
ec

on
d

innodb_buffer_pool_size=4 GB,
maxcontig=128

innodb_buffer_pool_size=5 GB,
maxcontig=128

innodb_buffer_pool_size=5 GB,
maxcontig=5

innodb_buffer_pool_size=5 GB,
directio

15 Optimizing MySQL on Sun Fire™ X4100 M2 Servers Sun Microsystems, Inc.

Figure 3-2. Test results for sysbench OLTP I/O bound read-only test with two 256
user connections

32 User Read/Write Test Results

A sysbench OLTP I/O bound read/write test was performed with 32 user connections on

the Sun Fire X4100 M2 server. Figure 3-3 illustrates the test results.

Figure 3-3. Test results for sysbench OLTP I/O bound read/write test with 32 user
connections

r

r

r

r
r r r

r

2 4 8 16 32 64 128 256

0

100

200

300

400

500

600

T
ra

ns
ac

tio
ns

/S
ec

on
d

Number of User Connections

0

50

100

150

200

250

300

0

50

100

150

200

250

300

T
ra

ns
ac

tio
ns

/S
ec

on
d

innodb_buffer_pool_size=4 GB
maxcontig=128

innodb_buffer_pool_size=5 GB
maxcontig=128

innodb_buffer_pool_size=5 GB,
maxcontig=5

innodb_buffer_pool_size=5 GB,
directio

16 Optimizing MySQL on Sun Fire™ X4100 M2 Servers Sun Microsystems, Inc.

Table 3-3 and Figure 3-4 depict the test results for sysbench OLTP I/O bound read/write

test with two 256 user connections.

Table 3-3. Test results

Figure 3-4. Test results for sysbench OLTP I/O bound read/write test with two 256
user connections

Number of User Connections Transactions/Second

2 146.04

4 232.05

8 291.1

16 289.12

32 288.51

64 297.32

128 295.32

256 273.91

2 4 8 16 32 64 128 256

0

50

100

150

200

250

300

350

T
ra

ns
ac

tio
ns

/S
ec

on
d

Number of User Connections

17 For More Information Sun Microsystems, Inc.

Chapter 4

For More Information

About the Author
Luojia Chen is a software engineer in Sun’s ISV Engineering organization. Working on

the open source team, Luojia specializes in MySQL adoption of key Sun technologies.

Currently, she is focused on MySQL benchmarks, performance monitoring,

optimization, and scalability in order to understand how to make MySQL run at peak

performance on Sun platforms.

References
Table 4-1 lists Sun hardware, software, support, and developer resources.

Table 4-1. Resources

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc.

If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is

http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints Online Web site at:

http://www.sun.com/blueprints/online.html

Description URL

Solaris 10 Operating System sun.com/solaris

Sun BluePrints Program sun.com/blueprints

Sun Servers sun.com/servers

Sun Storage sun.com/storage

Sun’s GNU/Linux Offerings sun.com/software/linux

Sun to Acquire MySQL Press Kit sun.com/aboutsun/media/presskits/2008-0116

Optimizing MySQL Server on Sun x64 Servers and Storage On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

© 2008 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, MySQL, Solaris, StorageTek, Sun BluePrints, Sun Fire and SunDocs are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries. AMD and Opteron are trademarks or registered trademarks of Advanced Micro Devices. Intel Xeon is a trademark or registered trademark of Intel

Corporation or its subsidiaries in the United States and other countries. Information subject to change without notice. Printed in USA 02/08

