
Secure Your Apache With mod_security http://www.howtoforge.com/book/print/1375

1 sur 5 26/08/06 12:07

Secure Your Apache With mod_security
Secure Your Apache With mod_security
Version 1.0
Author: Falko Timme <ft [at] falkotimme [dot] com>
Last edited 07/05/2006

This article shows how to install and configure mod_security. mod_security is an Apache module (for Apache 1 and 2) that provides intrusion detection and prevention for web applications. It aims at shielding web applications from known
and unknown attacks, such as SQL injection attacks, cross-site scripting, path traversal attacks, etc.

In the first chapter I will show how to install mod_security on Debian Sarge, Ubuntu 6.06 LTS (Dapper Drake), and on Fedora Core 5, and in the second chapter I will describe how to configure Apache for
independent from the distribution you're using.

I want to say first that this is not the only way of setting up such a system. There are many ways of achieving this goal but this is the way I take. I do not issue any guarantee that this will work for you!

1 Installation

1.1 Debian Sarge

mod_security is available as a Debian package in the default Debian repositories, therefore the installation is as simple as this:

apt-get install libapache2-mod-security
a2enmod mod-security
/etc/init.d/apache2 force-reload

1.2 Ubuntu 6.06 LTS (Dapper Drake)

The installation is exactly the same as on Debian Sarge:

apt-get install libapache2-mod-security
a2enmod mod-security
/etc/init.d/apache2 force-reload

1.3 Fedora Core 5

On Fedora, you can install and activate mod_security like this:

yum install mod_security
/etc/init.d/httpd restart

You should now find the file /etc/httpd/conf.d/mod_security.conf which already contains a basic mod_security configuration:

vi /etc/httpd/conf.d/mod_security.conf

Example configuration file for the mod_security Apache module

LoadModule security_module modules/mod_security.so

<IfModule mod_security.c>

 # Turn the filtering engine On or Off
 SecFilterEngine On

 # The audit engine works independently and
 # can be turned On of Off on the per-server or
 # on the per-directory basis
 SecAuditEngine RelevantOnly

 # Make sure that URL encoding is valid
 SecFilterCheckURLEncoding On

 # Unicode encoding check
 SecFilterCheckUnicodeEncoding On

 # Only allow bytes from this range
 SecFilterForceByteRange 1 255

 # Cookie format checks.
 SecFilterCheckCookieFormat On

 # The name of the audit log file
 SecAuditLog logs/audit_log

 # Should mod_security inspect POST payloads
 SecFilterScanPOST On

 # Default action set
 SecFilterDefaultAction "deny,log,status:406"

 # Simple example filter
 # SecFilter 111

 # Prevent path traversal (..) attacks
 # SecFilter "\.\./"

 # Weaker XSS protection but allows common HTML tags
 # SecFilter "<(|\n)*script"

 # Prevent XSS atacks (HTML/Javascript injection)
 # SecFilter "<(.|\n)+>"

 # Very crude filters to prevent SQL injection attacks
 # SecFilter "delete[[:space:]]+from"
 # SecFilter "insert[[:space:]]+into"
 # SecFilter "select.+from"

 # Require HTTP_USER_AGENT and HTTP_HOST headers

Secure Your Apache With mod_security http://www.howtoforge.com/book/print/1375

2 sur 5 26/08/06 12:07

 SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"

 # Only accept request encodings we know how to handle
 # we exclude GET requests from this because some (automated)
 # clients supply "text/html" as Content-Type
 SecFilterSelective REQUEST_METHOD "!^GET$" chain
 SecFilterSelective HTTP_Content-Type "!(^$|^application/x-www-form-urlencoded$|^multipart/form-data)"

 # Require Content-Length to be provided with
 # every POST request
 SecFilterSelective REQUEST_METHOD "^POST$" chain
 SecFilterSelective HTTP_Content-Length "^$"

 # Don't accept transfer encodings we know we don't handle
 # (and you don't need it anyway)
 SecFilterSelective HTTP_Transfer-Encoding "!^$"

 # Some common application-related rules from
 # http://modsecrules.monkeydev.org/rules.php?safety=safe

 #Nuke Bookmarks XSS
 SecFilterSelective THE_REQUEST "/modules\.php\?name=Bookmarks\&file=(del_cat\&catname|del_mark\&markname|edit_cat\&catname|edit_cat\&catcomment|marks\&catname|uploadbookmarks\&category)=(<[[:space:]]*script|(http|https|ftp)\:/)"

 #Nuke Bookmarks Marks.php SQL Injection Vulnerability
 SecFilterSelective THE_REQUEST "modules\.php\?name=Bookmarks\&file=marks\&catname=.*\&category=.*/**/(union|select|delete|insert)"

 #PHPNuke general XSS attempt
 #/modules.php?name=News&file=article&sid=1&optionbox=
 SecFilterSelective THE_REQUEST "/modules\.php\?*name=<[[:space:]]*script"

 # PHPNuke SQL injection attempt
 SecFilterSelective THE_REQUEST "/modules\.php\?*name=Search*instory="

 #phpnuke sql insertion
 SecFilterSelective THE_REQUEST "/modules\.php*name=Forums.*file=viewtopic*/forum=.*\'/"

 # WEB-PHP phpbb quick-reply.php arbitrary command attempt

 SecFilterSelective THE_REQUEST "/quick-reply\.php" chain
 SecFilter "phpbb_root_path="

 #Topic Calendar Mod for phpBB Cross-Site Scripting Attack
 SecFilterSelective THE_REQUEST "/calendar_scheduler\.php\?start=(<[[:space:]]*script|(http|https|ftp)\:/)"

 # phpMyAdmin: Safe

 #phpMyAdmin Export.PHP File Disclosure Vulnerability
 SecFilterSelective SCRIPT_FILENAME "export\.php$" chain
 SecFilterSelective ARG_what "\.\."

 #phpMyAdmin path vln
 SecFilterSelective REQUEST_URI "/css/phpmyadmin\.css\.php\?GLOBALS\[cfg\]\[ThemePath\]=/etc"

</IfModule>

You can keep this configuration, but to get a better understanding of what mod_security can do, you should comment out the <IfModule mod_security.c>...</IfModule>
your own mod_security ruleset, or just switch back to this one.

Copyright © 2006 Falko Timme
All Rights Reserved.

Secure Your Apache With mod_security - Page 2
2 Configuration

Now let's start with a basic mod_security configuration that allows us to insert rules quickly. We put all mod_security rules in the global Apache configuration (it is possible to use most of the directives in a virtual host context, too,
but not all).

On Debian and Ubuntu, we edit /etc/apache2/apache2.conf and put this at the end of it:

Debian/Ubuntu:

vi /etc/apache2/apache2.conf

<IfModule mod_security.c>
 # Turn the filtering engine On or Off
 SecFilterEngine On

 # Make sure that URL encoding is valid
 SecFilterCheckURLEncoding On

 # Unicode encoding check
 SecFilterCheckUnicodeEncoding Off

 # Only allow bytes from this range
 SecFilterForceByteRange 0 255

 # Only log suspicious requests
 SecAuditEngine RelevantOnly

 # The name of the audit log file
 SecAuditLog /var/log/apache2/audit_log
 # Debug level set to a minimum
 SecFilterDebugLog /var/log/apache2/modsec_debug_log
 SecFilterDebugLevel 0

 # Should mod_security inspect POST payloads
 SecFilterScanPOST On

 # By default log and deny suspicious requests
 # with HTTP status 500
 SecFilterDefaultAction "deny,log,status:500"

</IfModule>

On Fedora, we add pretty much the same to /etc/httpd/conf.d/mod_security.conf, but change the paths to the log files as Fedora's Apache uses /var/log/httpd

Fedora:

vi /etc/httpd/conf.d/mod_security.conf

<IfModule mod_security.c>
 # Turn the filtering engine On or Off
 SecFilterEngine On

Secure Your Apache With mod_security http://www.howtoforge.com/book/print/1375

3 sur 5 26/08/06 12:07

 # Make sure that URL encoding is valid
 SecFilterCheckURLEncoding On

 # Unicode encoding check
 SecFilterCheckUnicodeEncoding Off

 # Only allow bytes from this range
 SecFilterForceByteRange 0 255

 # Only log suspicious requests
 SecAuditEngine RelevantOnly

 # The name of the audit log file
 SecAuditLog /var/log/httpd/audit_log
 # Debug level set to a minimum
 SecFilterDebugLog /var/log/httpd/modsec_debug_log
 SecFilterDebugLevel 0

 # Should mod_security inspect POST payloads
 SecFilterScanPOST On

 # By default log and deny suspicious requests
 # with HTTP status 500
 SecFilterDefaultAction "deny,log,status:500"

</IfModule>

Afterwards we restart Apache:

Debian/Ubuntu:

/etc/init.d/apache2 restart

Fedora:

/etc/init.d/httpd restart

The directives are pretty self-explanatory.

SecFilterEngine (On|Off): enables/disables the filtering engine.
SecFilterCheckURLEncoding (On|Off): Special characters need to be encoded before they can be transmitted in the URL. With SecFilterCheckURLEncoding you can check if the necoding is valid.
SecFilterCheckUnicodeEncoding (On|Off): enables/disables unicode encoding validation. This should be turned off unless you're sure your web applications and the operating system can handle unicode.
SecFilterForceByteRange: force requests to consist only of bytes from a certain byte range. This can be useful to avoid stack overflow attacks. Default range values are 0 and 255, i.e. all byte values are allowed.
SecAuditEngine (On|Off|RelevantOnly): enables/disables mod_security logging. RelevantOnly means: only log relevant requests. Relevant requests are those requests that caused a filter match.
SecAuditLog: the path to the mod_security log file.
SecFilterDebugLog: path to mod_security's debug log.
SecFilterDebugLevel (0-9): controls how detailed the debug log is. 0: nothing gets logged (for production systems); 1: significant events; 2: info messages; 3: more detailed info messages; ...
SecFilterScanPOST (On|Off): with mod_security, you cannot only scan GET variables, you can also scan POST variables (from a form on a web site, etc.). This is disabled by default, but can be enabled with SecFilterScanPOST.
SecFilterDefaultAction: sets the default action for an event that is filtered by our filtering ruleset (which we still have to define). This directive is followed by actions to take, e.g.
log it to the audit log, and return a 500 (internal server error) error to the user. I will explain the most important actions next.

Actions

These are the most important actions mod_security can apply to an event that is catched by the filtering ruleset:

pass: Allow request to continue on filter match. This action is useful when you want to log a match but otherwise do not want to take action.
allow: This is a stronger version of the previous filter. After this action is performed the request will be allowed through and no other filters will be tried.
deny: Interrupt request processing on a filter match. Unless the status action is used too, ModSecurity will immediately return a HTTP 500 error code.
status: Use the supplied HTTP status code when the request is denied.
redirect: On filter match redirect the user to the given URL.
exec: Execute a binary on filter match. Full path to the binary is required.
log: Log filter match to the Apache error log.
nolog: Do not log the filter match. This will also prevent the audit logging from taking place.
chain: Rule chaining allows you to chain several rules into a bigger test.
auditlog: Log the transaction information to the audit log.
noauditlog: Do not log transaction information to the audit log.

Until now not much has happened. I will now present a few filter rules that should give you an idea what you can do with mod_security.

Let's assume you have an application that is vulnerable to SQL injection attacks. An attacker could try to delete all records from a MySQL table like this:

http://www.example.com/login.php?user=tom';DELETE%20FROM%20users--

You can prevent this with this rule:

SecFilter "delete[[:space:]]+from"

Whenever a request is caught by your filter, something like this is logged to your audit_log:

==
Request: 192.168.0.207 - - [04/Jul/2006:23:43:00 +1200] "GET /login.php?user=tom';DELETE%20FROM%20users-- HTTP/1.1" 500 1215
Handler: (null)
--
GET /login.php?user=tom';DELETE%20FROM%20users-- HTTP/1.1
Host: 192.168.0.100
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.4) Gecko/20060508 Firefox/1.5.0.4
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
mod_security-message: Access denied with code 500. Pattern match "delete[[:space:]]+from" at THE_REQUEST
mod_security-action: 500

HTTP/1.1 500 Internal Server Error
Last-Modified: Fri, 21 Oct 2005 14:30:18 GMT
ETag: "8238-4bf-833a5280"
Accept-Ranges: bytes
Content-Length: 1215
Connection: close
Content-Type: text/html

and SecFilterDefaultAction is applied (i.e., the request is denied, logged, and the user gets a 500 error). If you want a different action to take place, you can specify this individually for each filter rule, like this:

SecFilter "delete[[:space:]]+from" log,redirect:http://example.com/invalid_request.html

Secure Your Apache With mod_security http://www.howtoforge.com/book/print/1375

4 sur 5 26/08/06 12:07

This would redirect the request to a HTML page that could say something about that the request was invalid.

To prevent more SQL injection attacks, we can add a few other rules:

SecFilter "insert[[:space:]]+into"
SecFilter "select.+from"
SecFilter "drop[[:space:]]table"

The following directives help to prevent cross-site scripting attacks:

SecFilter "<script"
SecFilter "<.+>"

This one is for preventing path traversal attacks:

SecFilter "../"

Please note: sometimes you find

SecFilter "\.\./"

instead of

SecFilter "../"

As of mod_security 1.8, there is no need to escape dots anymore. This is managed automatically by mod_security which means you it doesn't mastter if you escape dots or not!

This one blocks all requests that do not contain the string php in it:

SecFilter !php

This directive blocks requests that try to execute /bin/sh on your server:

SecFilter /bin/sh

This one blocks all requests that contain the string viagra:

SecFilter "viagra"

You can also use regular expressions like here:

SecFilter "(viagra|mortgage|herbal)"

The problem with the SecFilter directive is that it scans the whole request instead of particular fields. If the referrer is ihateviagra.mydomain.com, it would be blocked by the last two directives. But if you want to prevent comment
spam, and your form to submit comments uses the POST method, then it would be better to just scan the POST variables for the string viagra. We can do this with the

SecFilterSelective "POST_PAYLOAD" "viagra"

You can also scan other fields of the request:

SecFilterSelective "HTTP_REFERER" "(viagra|mortgage|texasholdem)"

would block all requests that contain either viagra, mortgage, or texasholdem in the HTTP_REFERER field.

This rule requires HTTP_USER_AGENT and HTTP_HOST headers in every request:

SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"

You can also block IP addresses:

SecFilterSelective "REMOTE_ADDR" "^1.2.3.4$"

If you have an input field url in your comment form, and you want to scan the value of url for the string viagra, you do it like this:

SecFilterSelective "ARG_url" "viagra"

The following rule would redirect the Googlebot to the Google start page:

SecFilterSelective "HTTP_USER_AGENT" "Google" nolog,redirect:http://www.google.com

You can find a list of all fields you can scan in the ModSecurity documentation: http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/html-multipage/04-rules.html#N103D0

You should also check out these pages: http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html and http://atomicplayboy.net/blog/2005/01/30/an-introduction-to-mod-security/
and a more detailed explanation about what mod_security can do.

mod_security also allows your Apache to pretend it's another web server, e.g. like this:

SecServerSignature "Microsoft-IIS/5.0"

If Apache shouldn't show a signature at all, use this:

SecServerSignature " "

mod_security also allows you to filter outgoing content. For example, if you use PHP scripts, and there's a possibility that your PHP scripts result in a fatal error, and you don't want to show the real error message to your users
(because it can contain some important details that only you should see), you can do it like this:

SecFilterScanOutput On
SecFilterSelective OUTPUT "Fatal error:" deny,status:500
ErrorDocument 500 /php-fatal-error.html

If a fatal error occurs, the user will be redirected to the file php-fatal-error.html (which you must create before, of course).

This should give you a basic idea what you can do with mod_security. For more examples and details, you should definitely visit these URLs:

http://www.modsecurity.org
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/html-multipage/index.html
http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html
http://atomicplayboy.net/blog/2005/01/30/an-introduction-to-mod-security

There's also an online rule creator for mod_security here: http://leavesrustle.com/tools/modsecurity which helps you to create your own rules.

Secure Your Apache With mod_security http://www.howtoforge.com/book/print/1375

5 sur 5 26/08/06 12:07

You should now be able to add your own rules to the basic configuration from above. If you're unsure, you can start with this configuration:

<IfModule mod_security.c>
 # Turn the filtering engine On or Off
 SecFilterEngine On

 # Change Server: string
 SecServerSignature " "

 # Make sure that URL encoding is valid
 SecFilterCheckURLEncoding On

 # This setting should be set to On only if the Web site is
 # using the Unicode encoding. Otherwise it may interfere with
 # the normal Web site operation.
 SecFilterCheckUnicodeEncoding Off

 # Only allow bytes from this range
 SecFilterForceByteRange 1 255

 # The audit engine works independently and
 # can be turned On of Off on the per-server or
 # on the per-directory basis. "On" will log everything,
 # "DynamicOrRelevant" will log dynamic requests or violations,
 # and "RelevantOnly" will only log policy violations
 SecAuditEngine RelevantOnly

 # The name of the audit log file
 SecAuditLog /var/log/apache2/audit_log

 # Should mod_security inspect POST payloads
 SecFilterScanPOST On

 # Action to take by default
 SecFilterDefaultAction "deny,log,status:500"

 # Require HTTP_USER_AGENT and HTTP_HOST in all requests
 SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"

 # Prevent path traversal (..) attacks
 SecFilter "../"

 # Weaker XSS protection but allows common HTML tags
 SecFilter "<[[:space:]]*script"

 # Prevent XSS atacks (HTML/Javascript injection)
 SecFilter "<(.|n)+>"

 # Very crude filters to prevent SQL injection attacks
 SecFilter "delete[[:space:]]+from"
 SecFilter "insert[[:space:]]+into"
 SecFilter "select.+from"
 SecFilter "drop[[:space:]]table"

 # Protecting from XSS attacks through the PHP session cookie
 SecFilterSelective ARG_PHPSESSID "!^[0-9a-z]*$"
 SecFilterSelective COOKIE_PHPSESSID "!^[0-9a-z]*$"
</IfModule>

Another good starting point is the configuration proposed by the mod_security documentation (http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/html-multipage/aa-recommended_configuration.html

<IfModule mod_security.c>
 # Turn ModSecurity On
 SecFilterEngine On

 # Reject requests with status 403
 SecFilterDefaultAction "deny,log,status:403"

 # Some sane defaults
 SecFilterScanPOST On
 SecFilterCheckURLEncoding On
 SecFilterCheckUnicodeEncoding Off

 # Accept almost all byte values
 SecFilterForceByteRange 1 255

 # Server masking is optional
 # SecServerSignature "Microsoft-IIS/5.0"

 SecUploadDir /tmp
 SecUploadKeepFiles Off

 # Only record the interesting stuff
 SecAuditEngine RelevantOnly
 SecAuditLog /var/log/apache2/audit_log

 # You normally won't need debug logging
 SecFilterDebugLevel 0
 SecFilterDebugLog /var/log/apache2/modsec_debug_log

 # Only accept request encodings we know how to handle
 # we exclude GET requests from this because some (automated)
 # clients supply "text/html" as Content-Type
 SecFilterSelective REQUEST_METHOD "!^(GET|HEAD)$" chain
 SecFilterSelective HTTP_Content-Type \
 "!(^application/x-www-form-urlencoded$|^multipart/form-data;)"

 # Do not accept GET or HEAD requests with bodies
 SecFilterSelective REQUEST_METHOD "^(GET|HEAD)$" chain
 SecFilterSelective HTTP_Content-Length "!^$"

 # Require Content-Length to be provided with
 # every POST request
 SecFilterSelective REQUEST_METHOD "^POST$" chain
 SecFilterSelective HTTP_Content-Length "^$"

 # Don't accept transfer encodings we know we don't handle
 SecFilterSelective HTTP_Transfer-Encoding "!^$"
</IfModule>

Or you take the configuration that comes with Fedora's mod_security package. Always make sure you adjust the paths to the log files!

3 Links

Apache Module mod_security: http://www.modsecurity.org
mod_security Documentation: http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/html-multipage/index.html
ModSecurity Rules: http://www.modsecurity.org/projects/rules/index.html
Introducing mod_security (onlamp.com): http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html
An introduction to mod_security (atomicplayboy.net): http://atomicplayboy.net/blog/2005/01/30/an-introduction-to-mod-security
Online Rule Creator For mod_security: http://leavesrustle.com/tools/modsecurity

Copyright © 2006 Falko Timme
All Rights Reserved.

