

AN OPEN SOURCE WEB SOLUTION

Lighttpd Web Server and Chip Multithreading Technology

Reference Implementation

Amanda Waite, Sun Microsystems

Sun BluePrints™ Online — September 2008

Part No 820-5633-10
Revision 1.0, 9/23/08

Sun Microsystems, Inc.

Table of Contents

Reference Implementation . 1

The Web 2.0 Kit . 2

Hardware and Software Configuration . 3

Workload Test Descriptions. 4

The Faban Harness and Driver Framework . 4

Performance Tuning . 5

Opcode Caching . 5

Temporary Files . 9

Sizing the Number of Lighttpd Web Server and PHP Processes 9

Database Configuration . 12

Lighttpd Web Server Configuration. 13

Memcached . 13

Network Interface Card Interrupt Handling . 13

Nagle’s Algorithm. 16

Network I/O . 17

Best Practices for Deployment . 18

Conclusion . 20

About the Author . 20

References . 20

Ordering Sun Documents . 21

Accessing Sun Documentation Online . 21

1

An Open Source Web Solution

 Sun Microsystems, Inc.

An Open Source Web Solution

With more users interacting, working, purchasing, and communicating over the

network than ever before, Web 2.0 infrastructure is taking center stage in many

organizations. Demand is rising, and companies are looking for ways to tackle the

performance and scalability needs placed on Web infrastructure without raising IT

operational expenses. Today companies are turning to efficient, high-performance,

open source solutions as a way to decrease acquisition, licensing, and other ongoing

costs and stay within budget constraints.

The combination of open source Lighttpd Web server software and Sun servers with

CoolThreads™ technology provides a scalable, high-performance, and cost-effective

solution for Web environments. This Sun BluePrints™ article describes a reference

implementation based on the Lighttpd Web server software and Sun SPARC® Enterprise

T5120 servers, and explores its performance and scalability when running dynamic

workloads. Workload configuration and testing procedures are described, as well as

tuning and optimization steps that can be taken to determine optimal configurations

for performance and scalability. High-level throughput and latency characteristics also

are presented, and indicate the solution can deliver an average of 416 operations per

second for 2,250 users with 90 percent response time for all operations fulfilled within

the targets set by the workload definition.

Reference Implementation

The reference implementation consists of a Sun SPARC Enterprise T5120 server running

the Solaris™ Operating System (OS) and the Lighttpd Web server software that handles

requests from clients (Figure 1). Sun SPARC Enterprise T5120 servers with CoolThreads

technology blend the performance and scalability of midrange servers with the

economies of energy-efficient, chip multithreading (CMT) designs. Incorporating

UltraSPARC® T2 processors, these servers provide up to eight cores and 64 simultaneous

execution threads on a single processor to handle rising multithreaded Web workload

volumes.

A Sun Fire™ X4200 server provides access to a back-end database. Sun Fire X4200 servers

are fast, energy-efficient, and reliable one-way to four-way x64 servers. Designed to

deliver increased service levels while also offering lower operational costs and better

asset utilization, these two-socket, four-way servers include built-in redundancy and

remote management capabilities.

2

An Open Source Web Solution

Sun Microsystems, Inc.

Figure 1. An open source Web solution reference implementation

The Web 2.0 Kit

In order to understand the performance and scalability characteristics of the solution,

Sun used the Web 2.0 kit designed to test workloads with a high level of user

interactions, such as those utilized in typical Web 2.0 sites.

The Web2.0 kit is a reference architecture for Web 2.0 technologies, and provides a

sample Web 2.0 application implemented using three different technology stacks: the

Java™ Platform, Enterprise Edition (Java EE), PHP: Hypertext Preprocessor (PHP), and

Ruby on Rails (RoR). The Web 2.0 kit can be used in the following ways to:

• Evaluate the differences in the various languages/frameworks for RoR, JEE and PHP

(e.g by comparing how a functionality is implemented in each)

• Evaluate the infrastructure technologies for each implementation (e.g. Apache vs

lighttpd)

• Compare the performance of the various technologies (e.g PHP vs RoR)

The application in the Web 2.0 Kit implements a social events calendar with features

such as Asynchronous JavaScript™ and XML (AJAX), tagging, tag cloud, comments,

ratings, feeds, mashups, extensive use of data caching, use of both structured and

unstructured data, and a high data read/write ratio that is typical of applications in this

space.

The Web 2.0 Kit also includes a workload generator implemented using the Faban

harness and driver framework. See

http://faban.sourcenet.net

 for more information.

...Clients

Sun SPARC Enterprise T5120 Server

Running the Solaris 10 Operating System

and Lighttpd Web Server

Sun Fire X4200 Server

Running the MySQL Database

3

An Open Source Web Solution

 Sun Microsystems, Inc.

Hardware and Software Configuration

The workload test utilized one Sun SPARC Enterprise T5120 server and four Sun Fire

X4200 servers, all running the Solaris 10 OS and the Lighttpd Web server software

version 1.4.18 (Table 1). The Sun SPARC Enterprise T5120 server was the system under

test, and the Sun Fire X4200 servers were used to run the database and generate

request loads (Figure 2). All software utilized was obtained from the Optimized Open

Source Software Stack (Cool Stack) available from

http://cooltools/sunsource.net/

coolstack

.

Table 1. Hardware and software configuration

• System Under Test (SUT)

A Sun SPARC Enterprise T5120 server configured with one 1.2 GHz, 8-core

UltraSPARC T2 processor and four Gigabit Ethernet network interface cards (NIC)

(

e1000g

) served as the system under test. The primary network interface card,

e1000g0

, was connected to a subnet. The remaining three cards were connected

to a switch dedicated to a group of test systems to provide a variety of configuration

options. A virtual local area network (VLAN) was created on the switch for the

systems involved in the testing effort.

• Load generating systems (Faban agents)

Multiple load generating systems were used to drive sufficient load onto the system

under test. Each load generating system consisted of a Sun Fire X4200 server with two

primary Gigabit Ethernet network interface cards (

nge

), and two additional Gigabit

Ethernet network interface cards (

e1000g

). The primary network interface cards were

connected to a subnet, while the additional cards were connected to the same

dedicated switch as the system under test.

Hardware Component System Type Configuration Details

System Under Test Sun SPARC Enterprise
T5120 server

8 cores, 64 threads, 1.2 GHz, 32 GB RAM

Loader 1 Sun Fire X4200 server 2 dual-core AMD 2200 processors, 8 GB RAM

Loader 2 Sun Fire X4200 server 2 dual-core AMD 2200 processors, 8 GB RAM

Loader 3 Sun Fire X4200 server 2 dual-core AMD 2200 processors, 8 GB RAM

Database Sun Fire X4200 server 2 dual-core AMD 2200 processors, 8 GB RAM

Gigabit Ethernet Switch Linksys SRW2048 48 ports

Software Component Software Version

Operating System Solaris 10 OS 8/07

Web Server Lighttpd software 1.4.18 (from Cool Stack version 1.2)

PHP PHP 5.2.4 (from Cool Stack version 1.2)

Database MySQL™ database 5.0.45 (from Cool Stack version 1.2)

Test Harness Faban Various versions

4

An Open Source Web Solution

 Sun Microsystems, Inc.

• Master system

The Faban facility requires a system that acts as a master. The master can be one

of the agents used for testing, or a separate system. The majority of the testing

effort utilized a master that also acted as an agent. The Faban master coordinates

the agents and gathers data in a central repository. One, two, and three agents

were used during the testing effort, with agents added as the number of

concurrent users increased.

Figure 2. Configuration topology

Workload Test Descriptions

The workload tests conducted utilized the Faban harness, Faban driver framework, and

a Web 2.0 kit driver. The Faban driver was designed to drive the application in the Web

2.0 Kit and to simulate real world interactions by a number of concurrent users.

The Faban Harness and Driver Framework

The Faban harness is infrastructure for hosting workloads and automating execution. It

gathers data from a test run and presents it to users in graphical form through a Web

interface. Faban can manage the systems used in a workload test, including the system

under test, load generation systems, and even database and cache servers commonly

used in complex workload testing. The combination of the Faban harness and driver

framework controls most aspects of a test run, and performs the following tasks:

• Manages multiple Faban agents running on one or more systems.

• Coordinates the agents at startup to help ensure the server is not overloaded. This

includes a graduated increase in concurrent users, as well as a ramp up period

designed to warm up the application. The goal is to achieve an optimal running

state when actual measurements begin to take place.

Lighttpd Web

Server Processes

PHP

Processes

System

Under

Test

Load Generator 1

Load Generator 2

Agent 1

Agent 2

Master

5

An Open Source Web Solution

 Sun Microsystems, Inc.

• Controls the running of statistical tools on the system under test, database server,

Memcached servers, and agents, and gathers all data at the end of the test run.

• Works with the Faban driver to control think or cycle times between operations.

The workload test described in this document used a negative exponential,

resulting in a spread of think times between one and 25 seconds, with an average

of five seconds.

• Collects the statistics for each operation, calculates averages, and tests against

the targets defined in the driver.

• Presents results in textual and graphical form.

• Maintains a table that records all runs.

• Backs up the Apache Web Server

error.log

 file.

Performance Tuning

The following sections describe the features that typically pose challenges or provide

significant opportunity for tuning and improvement. Details on the changes with the

most effect on throughput and response time are highlighted.

Opcode Caching

PHP Web applications perform many tasks repeatedly — often with the same result

each time. Opcode caching allows the runtime to remember the results of a previous

invocation of a task and use those results the next time a request is made. The results

are stored in a least recently used (LRU) cache that can be sized in the

php.ini

configuration file. During the testing effort, the PHP opcode and variable cache,

XCache, was used rather than the Alternative PHP Cache (APC). While XCache is not yet

available in binary form, it is easy to build. After the build completes, the

xcache.so

 file

must be installed in the PHP 5 extensions directory, and the following entries must be

added to the PHP configuration file.

6

An Open Source Web Solution

 Sun Microsystems, Inc.

It is recommended that one cache be used for each CPU in use. During testing efforts,

xcache.count

 and

xcache.var_count

 were set to the number of CPUs, and the

opcode and variable cache size,

xcache.size

, was set to 128 MB. During the testing

effort, plenty of memory available and using the recommended memory configuration

was not a problem. Using XCache lessens the burden on processors, helping to reduce

latency and increase throughput. In order to use XCache, the Lighttpd

max-procs

directive must be set to one. In addition, the number of PHP processes must be

configured using the

PHP_FCGI_CHILDREN

environment variable, which is set in the

Lighttpd configuration file.

Table 2. Throughput for different numbers of users when XCache is enabled and disabled

[xcache-common]
extension = xcache.so

[xcache.admin]
xcache.admin.enable_auth = On
xcache.admin.user = "admin"
xcache.admin.pass = "5f4dcc3b5aa765d61d8327deb882cf99"

[xcache]
xcache.shm_scheme = "mmap"
xcache.size = 128M
xcache.count = 40
xcache.slots = 8K
xcache.ttl = 0
xcache.gc_interval = 0

; same as above but for variable cache
xcache.var_size = 128M
xcache.var_count = 40
xcache.var_slots = 8K
xcache.var_ttl = 0
xcache.var_maxttl = 0
xcache.var_gc_interval = 300
xcache.test = Off
xcache.mmap_path = "/dev/zero"
xcache.readonly_protection = Off

Number of Concurrent Users XCache Enabled Operations/Second

1,500 No 280

1,750 No 318

2,000 No 320

1,500 Yes 290

1,750 Yes 335

2,000 Yes 352

7

An Open Source Web Solution

 Sun Microsystems, Inc.

Table 2 and Figure 3 through Figure 6 show that enabling XCache helps increase

throughput, and has greater impact as the number of concurrent users rises. Average

response times improved in all tests, with some operations benefiting more from

opcode caching. CPU idle time increased as well — moving from an average of 25

percent idle to 55 percent idle with XCache enabled, and reducing

%USR

 by 50 percent.

These results are a reflection of the reduction in work required in the PHP application

due to caching effects.

Figure 3. Response time for 1,750 concurrent users with XCache disabled

Figure 4. Response time for 1,750 concurrent users with XCache enabled

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Time (Seconds)

0

HomePage

Login

TagSearch

EventDetail

PersonDetailAddPerson

AddEvent

R
e

s
p

o
n

s
e

 T
im

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

s
p

o
n

s
e

 T
im

e

HomePage

Login

TagSearch

EventDetail

PersonDetailAddPerson

AddEvent

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

Time (Seconds)

8

An Open Source Web Solution

 Sun Microsystems, Inc.

Figure 5. CPU utilization for 1,750 concurrent users with XCache disabled

Figure 6. CPU utilization for 1,750 concurrent users with XCache enabled

0 50 100 150 200 250 300 350 400 450 500 550 600

0

5

10

15

20

25

30

35

40

45

50

usr sys idle

C
P

U
 U

ti
liz

a
ti
o

n

Time (Seconds)

0

5

10

15

20

25

30

35

40

45

50

55

60

C
P

U
 U

ti
liz

a
ti
o

n

usr sys idle

50 100 150 200 250 300 350 400 450 500 550 6000

Time (Seconds)

9

An Open Source Web Solution

 Sun Microsystems, Inc.

Temporary Files

Related testing using the Apache Web Server revealed that PHP writes data from file

uploads into the

/var/tmp

 directory. When using loads consistent with this testing

effort, the file uploads resulted in considerable amounts of I/O. To alleviate the issue,

PHP was configured to write temporary data to the

/tmp

 directory, which is stored

entirely in memory in the Solaris OS. Initial testing showed the Lighttpd Web server

also writes file upload data to the

/var/tmp

 directory, with slow results due to the

reading and writing of temporary files. As a result, the Lighttpd Web server was

configured to use the

/tmp

 directory to store temporary files.

Using the

/tmp

 directory as a temporary file store for these kinds of workloads can

consume a large amount of memory. When memory limits are reached, it is important

to add more memory rather than reverting to disk-based temporary file storage in order

to maintain the performance benefits.

Sizing the Number of Lighttpd Web Server and PHP Processes

A server with 64 virtual CPUs can run a large number of Lighttpd Web server and PHP

back-end processes. Yet finding the right number of processes to run for optimal

performance is an iterative process, particularly as the number of concurrent users is

increased. While the right number is often found through experimentation, several

simple heuristics can help speed the process.

• If single-threaded processes are used, such as occurs with Lighttpd Web server and

PHP, make sure the total number of processes is the same or greater than the

number of CPUs.

• In general, processes like Web server workers and PHP back-ends do not spend all

their time executing on CPUs. As a result, it is possible to run more processes than

the number of CPUs in the system. Experimentation can help determine the

increased percentage of processes that results in optimum performance.

Table 3 lists a sample of the tests run at the midpoint of the testing effort, prior to the

best results being observed. In general, these results show that 12 to 16 Lighttpd Web

server processes and 64 to 128 PHP processes yield an optimal configuration.

Lighttpd configuration file options:
server.upload-dirs = (“/tmp”)

PHP configuration file options:
session.save_path = /tmp
upload_tmp_dir = /tmp
upload_max_fileize = 10M

10

An Open Source Web Solution

 Sun Microsystems, Inc.

Table 3. Throughput for different numbers of Lighttpd Web server and PHP processes

The following Lighttpd Web server configuration options were used during the testing

effort. The

max-procs

 value determines how many parent PHP processes can run,

while the

PHP_FCGI_CHILDREN

value determines how many child processes each PHP

parent process can spawn. The testing efforts specified one parent and 64 children

processes. Running with only one parent process comes with risk. If the parent process

fails, all of the PHP processes also fail. However, the configuration as defined lets the

Lighttpd Web server restart all of the back-end PHP processes automatically.

The Lighttpd Web server can also be configured to use a socket file to communicate

with back-end processes that were started manually using the

spawn-fcgi

 command.

During the testing effort, the

fastcgi.server

 entry in the Lighttpd Web server

configuration file was changed to enable the use of socket files as shown below.

Number of
Concurrent Users

Number of Lighttpd
Processes

Number of PHP
Processes Operations/Second

1,500 16 128 250

1,500 32 128 122

1,500 20 128 240

1,500 12 128 276

1,750 12 128 322

1,750 12 64 320

1,750 12 32 260

fastcgi.server =(".php" =>
("localhost" =>
(
"socket" => "/tmp/php-fastcgi.socket",

"bin-path" => "/opt/coolstack/php5/bin/

php-cgi
-c /opt/coolstack/php5/lib/php.ini",
"max-procs" => 1,
"bin-environment" => (

"PHP_FCGI_CHILDREN" => "64",
"PHP_FCGI_MAX_REQUESTS" => "10000"

)

,
"broken-scriptfilename" => "enable"

)
)

)

server.max-worker = 12

11

An Open Source Web Solution

 Sun Microsystems, Inc.

Once the configuration file was modified, the PHP processes were started with the

spawn-fcgi

 command.

When the number of Lighttpd Web server processes was raised to 18, CPU utilization

increased, without benefit to throughput. Figure 7 and Figure 8 show the CPU

utilization experienced with 12 and 18 Lighttpd Web server processes. These results

indicate the optimum value is in the range of 12 to 16 processes.

Figure 7. CPU utilization with 12 Lighttpd processes

fastcgi.server =(".php" =>
("localhost" =>
(
"socket" => "/tmp/php-fastcgi.socket”,
"broken-scriptfilename" => "enable"

)
)

)

/opt/coolstack/lighttpd/bin/spawn-fcgi -f "/opt/coolstack/php5/bin

/php-cgi -c /opt/coolstack/php5/lib/php.ini"
-s /tmp/php-fastcgi.socket

-C 64 -u webservd -g webservd

0 50 100 200 250 300

0

5

10

15

20

25

30

35

40

45

usr sys idle

C
P

U
 U

ti
liz

a
ti
o

n

Time (Seconds)

12

An Open Source Web Solution

 Sun Microsystems, Inc.

Figure 8. CPU utilization with 18 Lighttpd processes

Database Configuration

The default configuration for the MySQL™ database is not set for large-scale testing. For

example, the default value for the maximum number of open database connections,

max_connections

, is 100. The actual value needed depends on the number of PHP

processes communicating with the database, and the number of connections each PHP

process uses.

For the testing effort, a single instance of the MySQL database was used, and the

MyISAM tablestore was used for all runs. The content of the MySQL configuration file,

/etc/my.cnf

, used for testing is shown below.

50 100 150 200 250 300

0

5

10

15

20

25

30

35

40

usr sys idle

C
P

U
 U

ti
liz

a
ti
o

n

0

Time (Seconds)

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M
max_connections=4000
long_query_time=1
query_cache_size=20M
query_cache_limit=2M

[mysqldump]

13

An Open Source Web Solution

 Sun Microsystems, Inc.

Lighttpd Web Server Configuration

In addition to the number of Lighttpd Web server and PHP processes, a variety of

configuration parameters can be controlled by directives in the Lighttpd Web server

configuration file. The testing effort utilized Lighttpd Web server version 1.4.18, with a

configuration based on the default configuration file that comes with the Cool Stack

version of Lighttpd. Any changes to those defaults are detailed within this document.

The

server.network-backend

 parameter was set to

writev

 (the default)

, as the

Lighttpd Web server tries to use the specified

server.network-backend

 for all

operations, including sharing file data with back-end processes via UNIX® domain

sockets (UDS). Note that the Solaris OS

sendfilev

 function was not used since it does

not support writing to a UNIX domain socket.

Memcached

Memcached is a vital part of the Web 2.0 test, and is used by the PHP components of

the Web application to cache frequently accessed data. In effect, Memcached is a

distributed HashMap designed to act as a LRU cache. Applications must be modified to

access Memcached through a client library. Only the number of Memcached instances

can be tuned in the version of the Web 2.0 Kit that was used. It can be configured

through the application configuration file or the Faban harness. Testing shows that the

use of two, three, and four Memcached instances yields the same results for identical

runs of this workload at the load levels tested.

Network Interface Card Interrupt Handling

A significant side effect of the large network pipes made available by Gigabit Ethernet

and 10 Gigabit Ethernet network interface cards is the additional work that is needed to

handle incoming packets. Traditionally every packet of interest to the system generates

a hardware interrupt that must be serviced by a CPU. In addition, the CPU must run an

interrupt thread that moves the packet up the stack to make it available to the

application. Note that each network interface card in Sun SPARC Enterprise T5120

servers includes a CPU that is assigned to handle interrupts.

The

mdb

 command can be used to determine which CPU is servicing a network interface

card. The following example shows that the interrupts for device

e1000g#1

 are serviced

by CPU 59. In a Sun SPARC Enterprise T5120 server, CPU 59 is a single thread of one of

the processor cores (a virtual CPU).

server.network-backend = “writev”

14

An Open Source Web Solution

 Sun Microsystems, Inc.

The

mpstat

 command can be used to look at the work being performed by the CPUs. In

the example output below, CPUs 58, 59, and 61 are servicing network interface cards.

However, all network traffic is coming in on device

e1000g#1

, resulting in high system

time (sys) and a high number of interrupts (intr) and interrupt threads (ithr).

Note that it is not possible to spread the handling of interrupts across multiple virtual

CPUs when the built-in e1000g network interface card is used. However, it is possible to

distribute the execution of threads that move packets up the stack to applications.

The Solaris OS now includes a device driver architecture for NICs called the Generic LAN

Driver (GLD). GLD version 3 (GLDv3) includes features that help improve the performance

of NICs in the Solaris 10 OS and OpenSolaris operating system. In addition, GLDv3 adds

support for soft rings—virtual receive queues for incoming network packets. Soft rings

have worker threads that process incoming packets, and each thread has an affinity to a

specific CPU. When an incoming packet generates an interrupt, the thread handling the

interrupt passes packet handling to the worker thread. This spreads the overhead of

moving packets up the stack to the application across multiple CPUs. The overhead of

the initial interrupt handling done by a single CPU remains. However, the burden on

that CPU is reduced.

The number of soft rings can be configured by adding the following line to the

/etc/system file and rebooting the system.

Sun systems with CMT designs are configured from the factory with a default

soft_rings_cnt of 16. This is set in /etc/system as described above. Changes to

/etc/system generally survive system upgrades unless those upgrades are made using

automated mechanisms such as the Solaris Jumpstart™ software. Therefore it is

important to check the value for soft_rings_cnt on the system as it may have been

inadvertently reset to the Solaris OS default of two.

echo “::interrupts” | mdb -k
Device Shared Type MSG # State INO Mondo Pil CPU
e1000g#3 no MSI 4 enbl 0x1c 0x1c 6 61
e1000g#1 no MSI 3 enbl 0x1b 0x1b 6 59
e1000g#2 no MSI 2 enbl 0x1a 0x1a 6 58
e1000g#0 no MSI 1 enbl 0x19 0x19 6 31

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
58 162 0 4610 369 0 855 31 116 2613 1 13778 32 30 0 39
59 2 0 12626 13438 13321 2600 216 149 2497 0 772 2 70 0 28
60 11 0 665 2260 1 4784 428 385 1796 1 3968 11 26 0 63

set ip:ip_soft_ring_cnt=8

15 An Open Source Web Solution Sun Microsystems, Inc.

The ndd -set command can be used to set the number of soft rings. After the ndd

command completes, it is important to unplumb and plumb the interface in order for

the changes to take effect. Note this change is lost when the system is rebooted.

Modify the /etc/system file to make the change permanent.

The current number of soft rings can be determined using the ndd -get command.

Testing efforts showed the optimum soft rings setting for the test workload— and

perhaps for any Web application handling a large number of concurrent users on Sun

SPARC Enterprise T5120 servers—is eight to sixteen. Table 4 shows the results from test

runs using two and eight soft ring configurations. These results indicate that the

benefit of increasing the soft ring count rises with higher workloads. Tests were run

with sixteen soft rings, but no additional benefits were observed over running with

eight soft rings.

Table 4. Throughput comparison for two and eight soft rings

All Sun servers with chip multithreading technology have soft rings enabled by default,

with two soft rings defined. Soft rings can be disabled by adding the following line to

the /etc/system file and rebooting the system.

Setting the number of soft rings to zero reduced throughput to 167 operations/second

with 2,000 concurrent users during the testing effort. Table 5 identifies the soft rings

settings, overall CPU utilization, and specific statistics for the CPU servicing the

interrupts for the NIC doing the work. These results suggest that increasing the number

of soft rings increases the number of voluntary and involuntary context switches

experienced on the system.

ndd -set /dev/ip ip_soft_rings_cnt 8

ndd -get /dev/ip ip_soft_rings_cnt

Number of Concurrent Users ip_soft_ring_cnt Operations/Second

1,000 2 195

1,500 2 290

2,000 2 344

2,250 2 330

1,000 8 198

1,500 8 297

2,000 8 385

2,250 8 416

set ip_squeue_soft_ring=0

16 An Open Source Web Solution Sun Microsystems, Inc.

Table 5. Settings, utilization values, and statistics

Nagle’s Algorithm

Applications that generate large numbers of very small packets tend to suffer from

significant overhead. Nagle's Algorithm helps reduce network overhead by batching

packets and sending them together. For example, TCP/IP packets can carry a variable

amount of data. However, each TCP/IP packet contains the same sized header

(40 bytes). As a result, sending 1,000 packets that are each 1 byte in size is 40 times less

efficient than sending a single packet with 1,000 bytes.

With Nagle's Algorithm enabled, the first small packet is sent. However, subsequent

packets are not sent until an acknowledgment is received for the first packet, or until

there is a full packet of data to send. While such a mechanism can work well, the

delayed acknowledgment feature of the Transmission Control Protocol (TCP) can impact

results. This feature acknowledges the receipt of a packet when it has data to return to

the caller, when it receives a second packet from the caller, or a specified time has

elapsed. In this scenario, Nagle’s Algorithm does not get the immediate

acknowledgment it expects, adding delay to the round trip time of an HTTP request/

response pair.

Nagle’s Algorithm used to be enabled by default on most operating systems. While it is

enabled in the Solaris OS, it is disabled in the Linux environment. Furthermore, most

Web servers disable Nagle’s Algorithm at the socket layer by creating new sockets with

the TCP_NODELAY option. However, the Lighttpd Web server does not disable Nagle’s

Algorithm by default. As a result, running the Lighttpd Web server on the Solaris OS

creates an environment with Nagle’s Algorithm enabled.

ip_squeue_soft_ring 1 1 1 1

lp:ip_soft_rings_cnt 2 8 16 64

%SYS 28 30 31 31

%USR 26 27 27 27

%IDLE 46 43 42 42

Context Switches 119859 145142 152788 152714

Involuntary Context
Switches

5857 7429 10047 14408

Interrupts 79296 91046 95427 95194

Interrupt Threads 16147 1627 16062 15770

System Calls 692904 691896 666325 686565

CPU Cross Calls 336424 353031 363367 355585

CPU Migrations 24371 28642 31986 162135

17 An Open Source Web Solution Sun Microsystems, Inc.

The Lighttpd Web server packages included in the Cool Stack software disable Nagle’s

Algorithm by using the TCP_NODELAY option when creating sockets. During the testing

effort, versions of the Lighttpd Web Server that do and do not disable Nagle’s Algorithm

were compared. Based on the results shown in Table 6, the recommendation is to

disable Nagle’s Algorithm for Web-based workloads.

Table 6. Comparison of 90 percent response times with and without Nagle’s Algorithm

Network I/O

Network I/O is often a limiting factor in Web server environments. Gigabit Ethernet

supports full duplex operation, and can handle up to 1 Gigabit per second inbound and

outbound. These theoretical limits are reduced in practice by the overhead associated

in transmitting data across the network, and are dependent on the hardware in use.

During the testing effort, outbound traffic (HTTP responses) was three times greater

than inbound traffic (HTTP requests and file uploads). As a result, link saturation was

expected on the outbound side of transactions. Indeed, testing results showed

approximately 1 Gigabit per second was reached with 2,250 users as evidenced by the

following nicstat command output. These results reveal outbound throughput of

117,000 KB/second (914 megabits/second) outbound, and 45,000 KB/second (351

megabits/second) inbound.

Figure 9 shows the relationship of outbound network utilization versus the number of

concurrent users.

Number of Concurrent Users Nagle Enabled 90 Percent RT for HomePage

1,500 No 1.20

1,750 No 1.20

2,000 No 1.35

1,500 Yes 0.30

1,750 Yes 0.45

2,000 Yes 0.60

Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
22:54:07 lo0 0.00 0.00 4377.0 4377.0 0.00 0.00 0.00 0.00
22:54:07 e1000g0 0.15 0.01 2.40 0.20 64.00 64.00 0.00 0.00
22:54:07 e1000g1 45305.4 116290 50417.5 93264.8 920.2 1276.8 100 0.00

Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
22:54:17 lo0 0.00 0.00 4525.2 4525.2 0.00 0.00 0.00 0.00
22:54:17 e1000g0 0.19 0.00 2.60 0.00 74.85 0.00 0.00 0.00
22:54:17 e1000g1 42564.8 117343 48242.1 93275.1 903.5 1288.2 100 0.00

Time Int rKB/s wKB/s rPk/s wPk/s rAvs wAvs %Util Sat
22:54:27 lo0 0.00 0.00 4379.0 4379.0 0.00 0.00 0.00 0.00
22:54:27 e1000g0 0.15 0.00 1.90 0.00 78.84 0.00 0.00 0.00
22:54:27 e1000g1 42850.0 116126 48580.6 92562.4 903.2 1284.7 100 0.00

18 An Open Source Web Solution Sun Microsystems, Inc.

Figure 9. Outbound network utilization versus the number of concurrent users

Best Practices for Deployment
The testing effort demonstrates that 2,250 user connections running a representative

workload can be maintained while achieving approximately 92 percent of the

maximum throughput of 450 operations/second. At the same time, the average and

90
th

 percentile response times for all operations were within fairly aggressive targets as

defined by the Web 2.0 Kit. The network interface became saturated with 2,250 users.

Testing stopped at this level. It is possible to use the multiple networking interfaces

with link aggregation in the Sun SPARC Enterprise T5120 server and scale further.

Figure 10 shows the progression of the testing effort, and highlights where key

configuration changes were made that led to the next level of performance.

0

20

40

60

80

100

120

250 750 1250 1750 2250

O
u

tb
o

u
n

d
 N

et
w

o
rk

 U
til

iz
at

io
n

 (
K

B
)

Number of Concurrent Users

19 An Open Source Web Solution Sun Microsystems, Inc.

Figure 10. Operations per second versus the number of concurrent users

Several best practices can be implemented to improve the performance of the Lighttpd

Web server when running on Sun SPARC Enterprise T5120 servers.

• Use /tmp for temporary file storage
The Lighttpd Web server and PHP store file uploads to the /var/tmp directory by

default, resulting in significant file I/O that bottlenecks the I/O subsystem. Using

the /tmp directory for temporary storage reduces pressure on the I/O subsystem.

• Increase available memory when using /tmp for temporary file storage
Using the /tmp directory for temporary file storage requires additional memory.

Many Web workloads cannot scale without moving temporary storage to the /tmp

directory. Be sure to provide sufficient memory in the system to experience

optimum performance.

• Use an opcode cache
Using an opcode in an environment with high workloads can help improve

throughput and decrease response time for many operations. During the testing

effort, use of an opcode cache improved throughput by 10 percent.

22
50

20
00

17
50

15
00

12
50

10
0075

0

50
0

25
0

450

400

350

300

250

200

150

100

50

0

Number of
Concurrent Users

O
p

er
at

io
n

s
p

er
 S

ec
o

n
d

XCache with 8 Soft Rings XCache Basic

20 An Open Source Web Solution Sun Microsystems, Inc.

• Increase the number of soft rings
The factory setting for soft rings is 16, but upgrading or reinstalling the Solaris

Operating System can result in this setting being reset to two, a setting that is

inadequate for network-intensive applications. Be sure to check and increase the

number of soft rings for high workload conditions, if necessary.

• Disable Nagle’s Algorithm
Using Nagle’s Algorithm with certain types of workloads can delay the sending of

packets and acknowledgments. Disable Nagle’s Algorithm for Web-based

workloads to help improve network throughput and response time.

• Optimize the number of Lighttpd Web server processes
Configuring the system to use between 12 and 16 Lighttpd Web server processes

can help optimize performance on Sun SPARC Enterprise T5120 servers.

Conclusion
Sun SPARC Enterprise T5120 servers provide a solid platform for Web workloads,

particularly those that utilize the Lighttpd Web server. Blending the performance and

scalability of midrange servers with the economies of energy-efficient CMT designs,

these servers support up to 128 simultaneous execution threads on a single processor,

large memory, and integrated on-chip I/O technology to deliver the compute power

and networking capacity demanded by Web 2.0 architectures.

About the Author

Amanda Waite is a Staff Engineer in Sun’s ISV engineering team. Since joining Sun in

1998, Amanda has helped ISVs and systems integrators optimize products and solutions

for Sun platforms. She now works with the open source communities, including the

Lighttpd community, in a similar fashion. Amanda’s core expertise is in the Java

environment and scripting languages, such as Ruby, the JavaScript programming

language, and PHP. Currently, Amanda is working on integrating the Lighttpd Web

server into the OpenSolaris project.

References

Faban Harness:

http://faban.sourcenet.net

Sun SPARC Enterprise T5120 Servers:

http://sun.com/servers/coolthreads/t5120

Lighttpd Web Server:

http://www.lighttpd.net

21 An Open Source Web Solution Sun Microsystems, Inc.

Cool Stack:

http://cooltools.sunsource.net/coolstack

Add Web 2.0 Kit:

http://cooltools.sunsource.net/web20kit

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc.

If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints Online articles, visit the Sun BluePrints Online Web site at:

http://www.sun.com/blueprints/online.html

An Open Source Web Solution On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

© 2008 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, CoolThreads, Java, JavaScript, JumpStart, MySQL, OpenSolaris, Solaris, SunDocs, Sun BluePrints, and Sun Fire are trademarks

or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the US and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.UNIX is a registered trademark in the United States and

other countries, exclusively licensed through X/Open Company, Ltd. Information subject to change without notice. Printed in USA 09/08

