
Enable high availability for composite applications
A prototype for delivering variable-requirement high availability
to composite applications

Skill Level: Intermediate

Mahesh Viswanathan (maheshv@us.ibm.com)
Senior Technical Staff Member
IBM

Suraj Subramanian (suraj@us.ibm.com)
Senior Integration Architect
IBM

13 Jan 2009

This article describes an implementation of high availability for a composite
application using Linux-HA. Delivering high availability to composite applications can
be challenging. Because composite applications consist of several distinct
applications, each with different availability requirements, configuration is complex. In
this article, the authors describe how they designed and implemented a high
availability prototype for Tivoli® Maximo®, a composite app. Their configuration script
shows how you can provide high availability to a heterogeneous cluster of related
applications using a systematic and prioritized failover schedule.

In 2008 we developed a high availability solution for our CMDB implementations
(configuration management database), Tivoli Maximo and Tivoli Application
Dependency Discovery Manager, for a large online company. This company is
embarking on a full-fledged CCMDB (change and configuration management
database) implementation of Maximo (now named Tivoli Service Request Manager
and Tivoli Asset Manager for IT) that includes a single, enterprise-wide Maximo
(CCMDB version). The goal was to use multiple domain CMDB applications to
gather information from different company sites and aggregate them into an
enterprise CMDB instance. This enterprise CMDB data was filtered and
accumulated into a CCMDB instance, Maximo.

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 1 of 19

mailto:maheshv@us.ibm.com
mailto:suraj@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

Maximo stores both the ideal CMDB state of WISB ("what it should be") of the
enterprise as represented by the preset policies and the reality of WIRI ("what it
really is") as represented by the CI information gathered from thousands of servers
and applications deployed across the corporation.

Generally speaking, different functional nodes in a HA hierarchy require different HA
designs. For instance, gateway servers, generally Windows® machines, require
MSCS. Domain CMDB applications require HA, but using a cold standby is
adequate. Maximo, however, was required to be available 24/7, and both Maximo
and enterprise CMDB connect to its own individual databases—normally this would
be part of the cluster. But in this prototype we focused just on the HA of the
applications, so our design is for application availability only. Figure 1 shows our
design.

Figure 1. HA disaster recovery (DR) for Maximo and Enterprise Tivoli
Application Dependency Discovery Manager: Two 4-node HA clusters

In this article, we describe a method to manage a highly-available, heterogeneous,
multi-application cluster of nodes. Within the highly available cluster, each
application has a different availability profile; that makes our solution inherently more
complex than the simple high-availability solutions of single application classes, such
as databases.

Our solution was to come up an algorithm (protocol) to accommodate a first and

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 2 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

second failure of application (or nodes) within the highly available cluster. This
protocol provides the precise failover sequence for each of the application nodes in
the cluster. It takes into consideration situations where degraded performance is not
acceptable, and cases in which multiple applications cannot run on the same
machine due to runtime conflicts.

The design and implementation features are as follows:

1. Even though there are three applications in the cluster (Enterprise CMDB,
ITIC, and Maximo), Maximo has the highest priority of the three.
Therefore, no matter which application-node fails, Maximo must be
available for use by clients (client machines will invoke the Maximo API).

2. We deployed auto-failback using unbalanced weighting of nodes so that
when a downed server is restored, the application fails back to it.

3. Our design specification calls for managing for two failures in the cluster;
however, we were able to design and implement full availability of
CCMDB (Maximo) even after three failures.

4. We initially did not design with a quorum server in mind, but we had to
use one.

5. Configuring Linux®-HA to behave with this stringent set of failover rules
over one, two, and three failures was quite a challenge.

6. We replicated this design at the disaster recovery (DR) site (the remote
mirror site in Figure 1). The failover within a site is automatic and manual
across sites: automatic HA, manual DR.

7. To optimize the use of machines and to maintain HA, we designed for a
four-node cluster at each site: one node per application and a spare node
that will serve as the failover node.

HA architecture is used traditionally for single piece of software like a database or
Web server. In our example, we show how to achieve high availability for an
application like CCMDB, which consists of three individual software components:

• Tivoli Application Dependency Discovery Manager (TADDM): Provides
visibility for IT service management by discovering application
dependencies and configurations.

• IBM Tivoli Integration Composer (ITIC): Enables rapid integration of Tivoli
Asset Management for IT with asset inventory and system management
tools.

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 3 of 19

http://www.ibm.com/legal/copytrade.shtml

• Maximo: Provides comprehensive asset lifecycle and maintenance
management for all asset types on a single unified platform.

Installing HA

The Linux-HA installation is a simple and straightforward process (see Resources to
get the software). Ensure that the systems have the right level of patches to satisfy
the heartbeat software prerequisites. The version of Linux-HA used for our
demonstration is 2.1.4.

When the installation is complete, reboot the machine. This is an essential step.
Follow the steps in Listing 1 for all four machines that will be a part of this cluster.

Listing 1. Installing HA

[root@hacluster2 tmp]# rpm -ivh perl-TimeDate-1.16-3_2.0.el5.noarch.rpm
warning: perl-TimeDate-1.16-3_2.0.el5.noarch.rpm: Header V3 DSA signature:
NOKEY, key ID 66534c2b
Preparing ... ### [100%]

1:perl-TimeDate ### [100%]
[root@hacluster2 tmp]# rpm -ivh heartbeat-pils-2.1.4-2.1.i386.rpm
warning: heartbeat-pils-2.1.4-2.1.i386.rpm: Header V3 DSA signature:
NOKEY, key ID 1d326aeb
Preparing ... ### [100%]

1:heartbeat-pils ### [100%]
[root@hacluster2 tmp]# rpm -ivh heartbeat-stonith-2.1.4-2.1.i386.rpm
warning: heartbeat-stonith-2.1.4-2.1.i386.rpm: Header V3 DSA signature:
NOKEY, key ID 1d326aeb
Preparing ... ### [100%]

1:heartbeat-stonith ### [100%]
[root@hacluster2 tmp]# rpm -ivh heartbeat-2.1.4-2.1.i386.rpm
warning: heartbeat-2.1.4-2.1.i386.rpm: Header V3 DSA signature: NOKEY, key ID
1d326aeb
Preparing ... ### [100%]

1:heartbeat ### [100%]
[root@hacluster2 tmp]#

Configuring HA

The next step is to create the ha.cf file. Create the following file: /etc/ha.d/ha.cf. The
ha.cf file holds the information about which nodes are parts of this setup.

Create ha.cf on the machine assigned as the DC (designated coordinator). Copy this
file and the authkeys file to the other machines once you have created them using
FTP or plain SCP. Since four nodes (three applications and the spare) are in this
cluster, our ha.cf file will look something like this:

Listing 2. HA configuration file, ha.cf

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 4 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

node hacluster1.svl.ibm.com hacluster2.svl.ibm.com hacluster3.svl.ibm.com
hacluster4.svl.ibm.com

bcast eth0
crm on

In Listing 2:

• node is a directive that lists the nodes that are part of this cluster.

• bcast is a directive that means the nodes will communicate and ping
each other on this interface.

• crm is a directive that specifies whether the heartbeat should run a cluster
manager that supports two or more nodes.

In Listing 2, we keyed in the hostnames of the machines that belong to this cluster.
Next we needed to add an authentication key to /etc/ha.d/authkeys. Listing 3 shows
the example we used:

Listing 3. Sample authentication file, authkeys

#
Authentication file. Must be mode 600
#
#
Must have exactly one auth directive at the front.
auth sne authentication using this method-id
#
Then, list the method and key that go with that method-id
#
Available methods: crc sha1, md5. Crc doesn't need/want a key.
#
You normally only have one authentication method-id listed in this file
#
Put more than one to make a smooth transition when changing wuth
methods and/or keys.
#
#
sha1 is believed to be the "best", md5 next best.
#
crc adds no security, except from packet corruption.
Use only on physically secure networks.
#
auth 1
1 sha1 haclusteringisfun

NOTE: The permissions on this file must be 0600. Once these files are created, start
heartbeat by issuing the command /etc/init.d/heartbeat start.

Run the command shown in Listing 4 on all machines in this cluster:

Listing 4. Starting High-Availability services

[root@hacluster1 heartbeat]# /etc/init.d/heartbeat start

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 5 of 19

http://www.ibm.com/legal/copytrade.shtml

Starting High-Availability services:
[OK]

[root@hacluster1 heartbeat]#

If you see this message, it means your installation of Linux-HA is successful. Now
it's time to test the high availability of the composite application.

Adding a quorum server

In a two-node cluster, when one fails or the network connection snaps, each node
believes that it is the master and starts interacting with the outside world. This is a
race condition that is undesirable. We need an outside arbiter to ask one of the
machines to stand down.

If one of the machines has crashed, the arbiter will make that machine stand down.
This arbiter is called a quorum server; it can be any machine that both nodes in the
cluster can reach. This quorum server is thusly named because it runs a quorum
daemon. You modify the ha.cf to add this line to each of the ha.cf files:

Listing 5. Identifying a quorum server in ha.cf

cluster ourcmdb
quorum_server hacluster4.svl.ibm.com

The quorum server machine is not required to run heartbeat, but we recommend
heartbeat be installed in order to get access to all the binaries and directory paths
that are created (such as /etc/ha.d) when heartbeat is installed. On the quorum
server machine, edit the file /etc/ha.d/quorumd.conf and add the following lines:

Listing 6. Configuring the quorum server

cluster ourcmdb
version 2_1_4
interval 1000
timeout 5000
takeover 3000
giveup 2000

Then, start the quorum daemon using quorumd. Make sure that it starts each time
the machine is rebooted. To start quoromd automatically, add this to the inetd.

Linux-HA uses a configuration file called cib.xml, which is created automatically
when you start heartbeat on all the nodes in the cluster. This cib.xml file stores the
application configuration (specifying which application takes higher priority including
rules for high availability). You can modify the cib.xml by using the GUI tool
(/usr/bin/hb_gui), which is recommended, or manually.

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 6 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Cib.xml contains the following:

• Configuration information:

• Cluster node information

• Resource information

• Resource constraints

• Status information:

• Which nodes are up/down

• Attributes of nodes

• Which resources are running where

Because the cib.xml is under the control of the heartbeat process, avoid modifying
this file when the cluster is running.

NOTE: Permissions on cib.xml must be 0600 and must be owned by
haclient:hacluster.

Linux-HA comes with a set of resource agents based on the Open Cluster
Framework (OCF), the standard for achieving high availability. In our scenario, since
all the applications were customized, we had to build OCF resource agents for the
individual software components that were a part of the composite application.

Configuring heartbeat

Listing 7 shows the resource configuration in the heartbeat version we're using. The
config file is located at /var/lib/heartbeat/crm/cib.xml. Basically, this file specifies the
resource(s) for the cluster and where this resource should be executed.

Here is the cib.xml file we developed for our scenario; see Resources for a link.
We've annotated it to make the process easier to follow.

Listing 7. The resource configuration in heartbeat version 2

<cib generated="true" admin_epoch="0" have_quorum="true" ignore_dtd="false"
num_peers="2"
ccm_transition="2" cib_feature_revision="2.0" crm_feature_set="2.0" epoch="3"
dc_uuid="
ad893965-d27d-4908-a2ea-868f1661f644" num_updates="3" cib-last-written="Fri Nov
14
10:14:40 2008">

<configuration>
<crm_config>
<cluster_property_set id="cib-bootstrap-options">

<attributes/>
</cluster_property_set>

</crm_config>

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 7 of 19

http://www.ibm.com/legal/copytrade.shtml

<nodes> /* Names of the nodes in the cluster */
<node id="ad893965-d27d-4908-a2ea-868f1661f644"
uname="hacluster1.svl.ibm.com" type="normal"/> /* Maximo node */

<node id="5994eb92-0a13-4fc7-ab41-76098672fdbb"
uname="hacluster3.svl.ibm.com" type="normal"/> /* ITIC node */

<node id="c14b9082-5b1a-481c-930a-561e926df7c3"
uname="hacluster4.svl.ibm.com" type="normal"/> /* eCMDB node */

<node id="827b7884-06db-4d8d-994d-7e743b9bb969"
uname="hacluster2.svl.ibm.com" type="normal"/> /* Spare node */

</nodes>
<resources>
<group id="maximo_group">
/* Assign base parameters for each application - Maximo */
<primitive class="lsb" id="maximo_id" type="maximo">

<operations>
<op id="1" name="monitor" interval="10s"/>
<op id="2" name="start" start_delay="10s"/>

</operations>
<meta_attributes id="063383a7-2c60-4cf0-b3b0-a3670328c3b8">
<attributes> /* Priority are set as weighting factors. This

determines which
application will be placed on the spare node in the

event of
a second failure. Here, Maximo > eCMDB > ITIC. Note

that the
first failure pushes the downed application onto the

spare.
A subsequent failure determines whether the initially

downed
application or the newly downed application takes

precedence.
*/

<nvpair name="priority" value="3"
id="f0c58dd3-43bb-4a1e-86cc-8993e58ba399"/>

</attributes>
</meta_attributes>

</primitive>
</group>
<group id="iticd_group"> /* Assign base parameters for each application -

ITIC */
<primitive class="lsb" id="itic_id" type="iticd">

<operations>
<op id="3" name="monitor" interval="10s"/>
<op id="4" name="start" start_delay="10s"/>

</operations>
<meta_attributes id="cb35cbb3-3241-4bf6-9ab7-f06d6f5baf89">
<attributes>

<nvpair name="priority" value="2"
id="7f7a35eb-aff8-4f7d-8e4d-ec6a0414d6da"/>

</attributes>
</meta_attributes>

</primitive>
</group>
<group id="taddm_group"> /* Assign base parameters for each application -

eCMDB */
<primitive class="lsb" id="taddm_id" type="taddm">

<operations>
<op id="5" name="monitor" interval="10s"/>
<op id="6" name="start" start_delay="10s"/>

</operations>
<meta_attributes id="e7baab9a-1460-423f-aabd-f68137d00d42">
<attributes>

<nvpair name="priority" value="1"
id="0448d632-f8e7-4347-90bd-de8222b77bda"/>

</attributes>
</meta_attributes>

</primitive>
</group>

</resources>

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 8 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<constraints>
<rsc_colocation id="not_same_1" to="maximo_group" from="iticd_group"
score="-INFINITY" symmetrical="false"/> /* Maximo application should not

run on
the node assigned to ITIC */

<rsc_colocation id="not_same_3" to="maximo_group" from="taddm_group"
score="-INFINITY" symmetrical="false"/> /* Maximo application should not

run on
the node assigned eCMDB */

<rsc_colocation id="not_same_2" to="taddm_group" from="iticd_group"
score="-INFINITY" symmetrical="false"/> /* eCMDB application should not

run on
the node assigned to ITIC */

<rsc_location id="location_maximo" rsc="maximo_group">
<rule id="prefered_location_maximo_1" score="20">

<expression attribute="#uname" operation="eq"
value="hacluster2.svl.ibm.com"

id="a4b1be4e-4c25-46a6-9237-60a3b7b44389"/> /* Spare node for Maximo
should

preferred node fail */
</rule>
<rule id="prefered_location_maximo_2" score="100">

<expression attribute="#uname" operation="eq"
value="hacluster1.svl.ibm.com"

id="3ece30c7-0530-4b54-a21b-ace9b127d3e3"/> /* Preferred node for
Maximo

to run */
</rule>
<rule id="prefered_location_maximo_3" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster4.svl.ibm.com"

id="7cb3b3e2-191f-492d-84f9-257b96c02c3c"/> /* Maximo cannot co-exist
with

eCMDB on this node */
</rule>
<rule id="prefered_location_maximo_4" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster3.svl.ibm.com"

id="a78cce70-c717-4c33-910e-11cc39ded186"/> /* Maximo cannot co-exist
with

ITIC on this node */
</rule>

</rsc_location>
<rsc_location id="location_iticd" rsc="iticd_group">

<rule id="prefered_location_iticd_1" score="20">
<expression attribute="#uname" operation="eq"

value="hacluster2.svl.ibm.com"
id="e3de5eee-ee29-4e94-89d7-36fef3d76082"/> /* Spare node for ITIC

should
preferred node fail */

</rule>
<rule id="prefered_location_iticd_2" score="100">

<expression attribute="#uname" operation="eq"
value="hacluster3.svl.ibm.com"

id="f8153d3d-f821-46e3-b41d-7e869e2960ec"/> /* Preferred node for ITIC
to run */

</rule>
<rule id="prefered_location_iticd_3" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster1.svl.ibm.com"

id="7b7e7ec4-1381-47fb-afdf-732c4b180ba6"/> /* ITIC cannot co-exist
with

Maximo on this node */
</rule>
<rule id="prefered_location_iticd_4" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster4.svl.ibm.com"

id="1fd82c28-982b-462e-b147-6726d655a87f"/> /* ITIC cannot co-exist
with

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 9 of 19

http://www.ibm.com/legal/copytrade.shtml

eCMDB on this node */
</rule>

</rsc_location>
<rsc_location id="location_taddm" rsc="taddm_group">

<rule id="prefered_location_taddm_1" score="20">
<expression attribute="#uname" operation="eq"

value="hacluster2.svl.ibm.com"
id="b029d8a7-5a40-481f-8ebc-1168d6d76efa"/> /* Spare node for eCMDB

should
preferred node fail */

</rule>
<rule id="prefered_location_taddm_2" score="100">

<expression attribute="#uname" operation="eq"
value="hacluster4.svl.ibm.com"

id="2cdf690e-e9c7-464e-9148-21be25565161"/> /* Preferred node for
eCMDB

to run */
</rule>
<rule id="prefered_location_taddm_3" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster1.svl.ibm.com"

id="a3065c9e-e253-4890-879f-9cf143d82fed"/> /* eCMDB cannot co-exist
with

Maximo on this node */
</rule>
<rule id="prefered_location_taddm_4" score="-INFINITY">

<expression attribute="#uname" operation="eq"
value="hacluster3.svl.ibm.com"

id="dfd2f607-a322-483d-af67-b33b6ba3556d"/> /* eCMDB cannot co-exist
with

ITIC on this node */
</rule>

</rsc_location>
</constraints>

</configuration>
</cib>
</code>

Testing the scenario

The example we used here is a three-application, three-node system with one spare
node. For the algorithm, we used a four-machine cluster that includes Maximo,
eCMDB (shorthand for Enterprise TADDM server), IC (shorthand for Integration
Composer), and one passive spare, all identically equipped hardware-wise. Furnish
the remote site with a similar set of four machines. The passive spare can run any of
Maximo, eCMDB, or IC applications. The algorithm follows this logical path:

1. The first machine or application that fails gets to run on the spare. And it
automatically fails back if the original node is functioning again.

2. In the event of a second failure, the application precedence on the spare
machine is as follows: Maximo, then eCMDB, followed by IC. Maximo is
the most critical application since client applications expect to invoke it at
all times.

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 10 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

3. Observe same priority at both sites: local and remote.

We require only one spare for three distinct applications. These applications have a
built-in priority. While all three are expected to be highly available, there is a pecking
order for that availability, and all machines and applications must respect it.

If we have one application that must be available 24x7, and the other applications
don't have such a stringent HA requirements, then one spare is the least we need. If
we have two such machines with equal HA profiles, then we need two spares, and
so on. All of the stated conditions are true if we cannot have applications coexist on
the spare node. That is, there is no conflict that prevents the three applications from
being installed on the same (spare) machine. Figure 1 illustrated the
three-application, four-node cluster example. The figure on the right side is a
mirror-image of the left side and is used for disaster recovery purposes. The latter is
used only if all four machines on the left side are down.

In the tables below, Maximo (= A), eCMDB (= B), and ITIC (= C) run on separate
machines. Let's ignore machine names since they don't matter; each takes on the
identity of the application that runs on it.

The machines do not run any other significant applications except the designated
ones. The passive spare machine (= O) has Maximo, eCMDB, and ITIC installed,
but can only support one application in execute mode.

Remember, the application priority is Maximo > eCMDB > ITIC; in our HA design,
and O is designated coordinator (spare node).

Table 1. The first failure
Application that fails App configuration AFTER first

failure

A A => O; B; C

B A; B => O; C

C A; B; C => O

O No strategy

Figure 2. First failure

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 11 of 19

http://www.ibm.com/legal/copytrade.shtml

Table 2. Second failure (A = O means A is already running on O after first
failure)
Identity of first
failure

Configuration
BEFORE
second failure

Second failure Configuration
AFTER second
failure

A A => O; B; C B A = O; B
unavail; C;

C A = O; B; C
unavail

B A; B => O; C A B exits; A => O;
C; B unavail

C A; B = O; C
unavail

C A; B; C => O A C exits; A => O;
B; C unavail

B C exits; A; B =>
O; C unavail

For the second failure, case 1: If A fails, it is placed on the spare node. If ITIC or
eCMDB should fail next, nothing happens. Maximo is continuously available on the
spare node.

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 12 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 3. Second failure, case 1

For the second failure, case 2: If eCMDB is on the spare node, then the subsequent
failure of ITIC will not change the status quo; however, Maximo will bump eCMDB
from the spare node.

Figure 4. Second failure, case 2

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 13 of 19

http://www.ibm.com/legal/copytrade.shtml

For the second failure, case 3: If ITIC is on the spare node, then the subsequent
failure of eCMDB will bump ITIC from its perch. Should Maximo then fail, it will bump
eCMDB from the spare node. If no node but the spare is available in the cluster,
Maximo will be the only application running.

Figure 5. Second failure, case 3

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 14 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Summary of implementation

The implementation follows these rules:

1. Four-node cluster with one passive spare.

2. The three applications run on dedicated nodes.

3. Applications cannot be placed together in execution mode (they are
mutually exclusive).

4. On application failure, the application will be restarted two times, and then
it fails over to the spare node.

5. On node failure, the application fails over to the spare node. The
application fails back to its pre-designated node once the node is
restored.

6. Application failover takes approximately 45 seconds. TADDM takes
longer.

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 15 of 19

http://www.ibm.com/legal/copytrade.shtml

7. Application is placed on the spare on a first-come/first-served basis.

8. Availability hierarchy is observed at all times: Maximo > TADDM > ITIC.

• Second application/node failure will make sure that Maximo is always
available. If ITIC or TADDM is already on the spare, it will be bumped
in favor of Maximo.

• A complete set of round-robin tests is performed to make sure this is
the case.

9. A hand-crafted and tested configuration file was tuned for the above
behavior.

Disaster recovery

The matrix on the remote site is exactly the same, but none of the applications are in
running state. Only the common external disk is replicated from the primary. After
site failover, the process is:

1. Stop all primary machines (including databases).

2. Detach VIP from primary machines.

3. Pass control (manually) to remote site.

4. Designate network disk in remote site as Master.

5. Start heartbeat using our cluster control script (which will start the
applications in the same sequence and priority as the primary).

6. Sync application with network disk and databases.

7. Assign same VIP from primary to remote network.

8. Respond to client invocation (as before).

Summary

This article describes our HA implementation for a composite application using
Linux-HA, based on our experience with a customer's requirements. Our HA task
involved multiple applications with different pecking orders within the same cluster. It
might have been simpler to add a spare for each application, but that solution is not
economical. For most real-world applications of HA, you have to deal with the reality
of economics, as well as redundancy—and they are often mutually exclusive.

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 16 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Acknowledgments

Alan Robertson, Linux-HA wizard, was our consultant and sounding board. We
simply could not have done this without his encouragement and generous
assistance.

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 17 of 19

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• This site presents a simple and common resource configuration (the one the
cib.xml example from this article is based on).

• Learn more about heartbeat in these Webcasts and documents; there are even
tutorials to teach you.

• Let an expert take you on a tour of the Linux-HA Quorum API and then even
more about the subject.

• OCF standards can lead you to resource agents (mentioned in this article) or to
a world of other Open Cluster Framework APIs including more resource
services, as well as node, group, and lock services and external interfaces.

• "Set up a Web server cluster in 5 easy steps" (developerWorks, August 2007)
shows you how to get up and running with the Linux Virtual Server and
Linux-HA.org's Heartbeat.

• The Installing a large Linux cluster series (developerWorks, started in
December 2006) describes cluster computing with Linux; the first in the series
introduces HA and heartbeat software.

• Learn about the latest in IBM Tivoli software.

• In the developerWorks Linux zone, find more resources for Linux developers
(including developers who are new to Linux), and scan our most popular articles
and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Grab your Linux-HA software: The CRM is now maintained as an independent
project called Pacemaker; Heartbeat 2.1.4 was the last release to contain the
CRM.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the developerWorks community through blogs, forums,
podcasts, and spaces.

developerWorks® ibm.com/developerWorks

Enable high availability for composite applications
Page 18 of 19 © Copyright IBM Corporation 2008. All rights reserved.

http://www.linux-ha.org/v2/Examples/Simple
http://www.linux-ha.org/LearningAboutHeartbeat
http://www.linux-ha.org/HeartbeatTutorials
http://techthoughts.typepad.com/managing_computers/2007/11/quorum-server-i.html
http://techthoughts.typepad.com/managing_computers/2007/10/more-about-quor.html
http://techthoughts.typepad.com/managing_computers/2007/10/more-about-quor.html
http://opencf.org/standards.html
http://www.ibm.com/developerworks/linux/library/l-linux-ha/
http://www.ibm.com/developerworks/systems/library/es-linuxclusterintro/
http://www.ibm.com/software/tivoli/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/newto/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://linux-ha.org/download
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

About the authors

Mahesh Viswanathan
Mahesh Viswanathan is a Senior Technical Staff Member in IBM Global Technology
Services. He is Chief Architect for the Express Remote Managed Infrastructure
Services, a managed services product for remote delivery of infrastructure services.
Mahesh was a Research Staff Member at the T.J. Watson Research Center. His
interests include remote services delivery, service-enabled information systems,
high-availability of composite applications, human machine interfaces in cars, speech
recognition and synthesis, audio/video search and retrieval, and document image
analysis. He has a Ph.D. in Electrical, Computer, and Systems Engineering from
Rensselaer Polytechnic Institute, specializing in image analysis. He has more than 30
technical publications and 20 international patents and is an IBM Master Inventor and
a senior member of the IEEE.

Suraj Subramanian
Suraj Subramanian is a Senior Integration Architect at the Banking Center of
Excellence, HiPODS, located in San Jose, CA. He is responsible for rapid prototyping
and proofs-of-concept that demonstrate integration with \ IBM's software products to
banks and other IBM customers. Previously, Suraj spent 5 years in IBM's Global
Services and was the Client IT Architect for eBay. His interests include Enterprise
Integration Architecture with a focus on high availability and performance. He has a
Bachelor's Degree in Electronics Engineering from Mumbai University, India.

ibm.com/developerWorks developerWorks®

Enable high availability for composite applications
© Copyright IBM Corporation 2008. All rights reserved. Page 19 of 19

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Installing
 HA
	Configuring
 HA
	Testing the
 scenario
	Summary
	Resources
	About the authors

