
ONLamp.com: Introducing Slony http://www.onlamp.com/lpt/a/5328

1 sur 5 06.08.2007 14:55

 Published on ONLamp.com (http://www.onlamp.com/)

 http://www.onlamp.com/pub/a/onlamp/2004/11/18/slony.html

 See this if you're having trouble printing code examples

Introducing Slony

by A. Elein Mustain
11/18/2004

Slony is the Russian plural for elephant. It is also the name of the new replication
project being developed by Jan Weick. The mascot for Slony, Slon, is a good variation
of the usual Postgres elephant mascot, created by Jan.

Figure 1. Slon, the Slony mascot.

Slony-I, the first iteration of the project, is an asynchronous replicator of a single
master database to multiple replicas, which in turn may have cascaded replicas. It
will include all features required to replicate large databases with a reasonable
number of replicas. Jan has targeted Slony-I toward data centers and backup sites,
implying that all nodes in the network are always available.

The master is the primary database with which the applications interact. Replicas are
replications, or copies of the primary database. Since the master database is always
changing, data replication is the system that enables the updates of secondary, or
replica, databases as the master database updates. In synchronous replication
systems, the master and the replica are consistent exact copies. The client does not
receive a commit until all replicas have the transaction in question. Asynchronous
replication loosens that binding and allows the replica to copy transactions from the
master, rolling forward, at its own pace. The server issues a commit to the master
client based on the state of the master database transaction.

Cascading replicas over a WAN minimizes bandwidth, enabling better scalability and
also enables read-only (for example, reporting) applications to take advantage of
replicas.

ONLamp.com: Introducing Slony http://www.onlamp.com/lpt/a/5328

2 sur 5 06.08.2007 14:55

Figure 2. Cascading replicas

Assume you have a primary site, with a database server and a replica as backup
server. Then you create a remote backup center with its own main server and its
backup replica. The remote primary server is a direct replica, replicating from the
master over the WAN, while the remote secondary server is a cascaded replica,
replicating from the primary server via the LAN. This avoids transferring all of the
transactions twice over the WAN. More importantly, this configuration enables you to
have a remote backup with its own local failover already in place for cases such as a
data center failure.

Slony's design goals differentiate it from other replication systems. The initial plan
was to enable a few very important key features as a basis for implementing these
design goals. An underlying theme to the design is to update only that which changes,
enabling scalable replication for a reliable failover strategy.

The design goals for Slony are:

The ability to install, configure, and create a replica and let it join and catch up
with a running database.

This allows the replacement of both masters and replicas. This idea
also enables cascading replicas, which in turn adds scalability,
limitation of bandwidth, and proper handling of failover situations.

1.

Allowing any node to take over for any other node that fails.

In the case of a failure of a replica that provides data to other replicas,
the other replicas can continue to replicate from another replica or
directly from the master.

Figure 3. Replication continues after a failure

2.

ONLamp.com: Introducing Slony http://www.onlamp.com/lpt/a/5328

3 sur 5 06.08.2007 14:55

In the case where a master node fails, a replica can receive a
promotion to become a master. Any other replicas can then replicate
from the new master. Because Slony-I is asynchronous, the different
replicas may be ahead of or behind each other. When a replica
becomes a master, it synchronizes itself with the state of the most
recent other replica.

In other replication solutions, this roll forward of the new master is not
possible. In those solutions, when promoting a replica to master, any
other replicas that exist must rebuild from scratch in order to
synchronize with the new master correctly. A failover of a 1TB
database leaves the new master with no failover of its own for quite a
while.

The Slony design handles the case where multiple replicas may be at
different synchronization times with the master and are able to
resynchronize when a new master arises. For example, different
replicas could logically be in the future, compared to the new master.
There is a way to detect and correct this. If there weren't, you would
have to dump and restore the other replicas from the new master to
synchronize again.

It's possible to roll forward the new master, if necessary, from other
replicas because of the packaging and saving of the replication
transactions. Replication data is packaged into blocks of transactions
and sent to each replica. Each replica knows what blocks it has
consumed. Each replica can also pass those blocks along to other
servers--this is the mechanism of cascading replicas. A new master may
be on transaction block 17 relative to the old master, when another
replica is on transaction block 20 relative to the old master. Switching
to the new master causes the other replicas to send blocks 18, 19, and
20 to the new master.

Jan, said, "This feature took me a while to develop, even in theory."

Backup and point-in-time capability with a twist.

It is possible, with some scripting, to maintain a delayed replica as a
backup that might, for example, be two hours behind the master. This
is done by storing and delaying the application of the transaction
blocks. With this technique, it is possible to do a point-in-time recovery
anytime within the last two hours on this replica. The time it takes to
recover only depends on the time to which you choose to recover.
Choosing "45 minutes ago" would take about one hour and 15 minutes,
for example, independent of database size.

3.

Hot PostgreSQL installation and configuration.

For failover, it must be possible to put a new master into place and
reconfigure the system to allow the reassignment of any replica to the
master or to cascade from another replica. All of this must be possible
without taking down the system.

This means that it must be possible to add and synchronize a new
replica without disrupting the master. When the new replica is in
place, the master switch can happen.

This is particularly useful when the new replica is a different
PostgreSQL version than the previous one. If you create an 8.0 replica
from your 7.4 master, it now is possible to promote the 8.0 to master as

4.

ONLamp.com: Introducing Slony http://www.onlamp.com/lpt/a/5328

4 sur 5 06.08.2007 14:55

Related Reading

Practical PostgreSQL
By John C. Worsley,
Joshua D. Drake

Table of Contents
Index
Sample Chapter

a hot upgrade to the new version.

Schema changes.

Schema changes require special consideration. The bundling of the
replication transactions must be able to join all of the pertinent schema
changes together, whether or not they took place in the same
transaction. Identifying these change sets is very difficult.

In order to address this issue, Slony-I has a way to execute SQL scripts
in a controlled fashion. This means that it is even more important to
bundle and save your schema changes in scripts. Tracking your schema
changes in scripts is a key DBA procedure for keeping your system in
order and your database recreatable.

5.

The first part of Slony-I also does not address any of the
user interface features required to set up and configure
the system. After the core engine of Slony-I becomes
available, development of the configuration and
maintenance interface can begin. There may be multiple
interfaces available, depending on who develops the user
interface and how.

Jan points out that "replication will never be something
where you type SETUP and all of a sudden your existing
enterprise system will nicely replicate in a disaster
recovery scenario." Designing how to set up your
replication is a complex problem.

The user interface(s) will be important to clarify and
simplify the configuration and maintenance of your
replication system. Some of the issues to address include
the configuration of which tables to replicate, the
requirement of primary keys, and the handling of
sequence and trigger coordination.

The Slony-I release does not address the issues of
multi-master, synchronous replication or sporadically
synchronizable nodes (the "sales person on the road"
scenario). However, Jan is considering these issues in the
architecture of the system so that future Slony releases
may implement some of them. It is critical to design future
features into the system; analysis of existing replication
systems has shown that it is next to impossible to add fundamental features to an
existing replication system.

The primary question to ask regarding the requirements for a failover system is how
much down time can you afford. Is five minutes acceptable? Is one hour? Must the
failover be read/write, or is it acceptable to have a read-only temporary failover? The
second question you must ask is whether you are willing to invest in the hardware
required to support multiple copies of your database. A clear cost/benefit analysis is
necessary, especially for large databases.

References

General Bits Slony Articles on Tidbits
The Slony-I Project documentation on GBorg
Slonik Commands
Jan Wieck's Original Slony-I Talk and Scripts, July 2004 in Portland, OR,

ONLamp.com: Introducing Slony http://www.onlamp.com/lpt/a/5328

5 sur 5 06.08.2007 14:55

sponsored by Affilias Global Registry Services
Information from IRC's #slony on freenode.net
The Slony1-general@gborg.postgresql.org mailing list

A. Elein Mustain has more than 15 years of experience working with databases, 10 of
those working exclusively with object relational database systems.

Return to ONLamp.com.

Copyright © 2007 O'Reilly Media, Inc.

