
Speaking UNIX: The new and improved Vim editor
Edit your code on virtually any platform

Skill Level: Intermediate

Adam T. Cormany (acormany@yahoo.com)
National Data Center Manager
Scientific Games Corporation

19 Aug 2008

If you've worked on IBM® AIX®, another flavor of UNIX®, or Linux®, you've more
than likely used the vi editor. Since its conception in 1976, vi has become a staple for
anyone wanting to edit files. How could someone make a more powerful editing tool
than vi, you may ask? The answer is Vim, and this article provides details on the
many enhancements that have made Vim a highly used and acceptable editor in the
world of UNIX and Linux.

The vi program is a powerful text editor. William Joy, co-founder of Sun
Microsystems, originally wrote the vi editor in 1976 for an early version of Berkeley
Software Distribution (BSD) UNIX. Rumor has it that Bill wrote vi in a weekend, but
he says the claim is untrue. The program was named after the visual command in
the extended line editor for UNIX—ex, for short.

The vi editor is an extremely powerful editor, with several features that many don't
know even exist. Vi is a modal editor, meaning that the program produces different
results when other settings are placed on the program. There are three distinct
modes in vi: command, insert (or input), and line. When operating in insert mode,
text is written to a temporary file being edited; while in normal mode, the same
keystrokes provoke commands embedded in the editor. To enter insert mode, simply
press the I key; to exit to command mode, press Escape. (I explain line mode in
further detail later in this article.)

For example, in insert mode, if a you type the string 10dd, that string would be
written to the temporary file, as shown in Figure 1.

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 16

mailto:acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

Figure 1. Typing dd in insert mode

However, if you were in command mode, the string 10dd would delete the 10 lines
from the temporary file starting from where the cursor is currently placed, as shown
in Figure 2.

Figure 2. Typing dd in command mode

Another example is cursor movement. In command mode, the keys H, J, K, and L
move the cursor left, down, up, and right, respectively, as shown in Figure 3. In
insert mode, these letters are displayed, instead.

Figure 3. Cursor movement in vi

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 2 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Typically, UNIX users either use vi or another editor called Editor Macros (Emacs)
written by Richard Stallman in 1976. Many choose vi, however, because it's
lightweight, starts faster, and uses less memory.

What is Vim?

Vim, or Vi Improved, is an extended version of vi written by Bram Moolenaar in
1991. The editor was originally designed for the Amiga computer but soon spread
through UNIX in 1992. Like vi, Vim is based on command mode and insert mode as
a text user interface (TUI)—shown in Figure 4.

Figure 4. The Vim TUI

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 16

http://www.ibm.com/legal/copytrade.shtml

However, it does offer a graphical user interface (GUI) appropriately named
gVim—shown in Figure 5.

Figure 5. The Vim GUI

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 4 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Vim commands

Internal commands within Vim are similar to those within the vi editor. Table 1
provides the cursor movement commands within Vim.

Table 1. Vim commands for effecting cursor movement
Command Action

h Move cursor left

j, Plus Sign (+), Enter, or Return Move cursor down

k, Minus Sign (-) Move cursor up

l Move cursor right

} Move cursor to the end of the
current paragraph

{ Move cursor to the beginning of
the current paragraph

) Move cursor to the end of the
current sentence

(Move cursor to the beginning of
the current sentence

^ Move to the first non-blank
character in the current line

$ Move to the end of the current
line

0 (zero) Move to the beginning of the
current line

w or W Move to the beginning of the next
word

b or B Move to the beginning of the
previous word

e Move to the end of the next word

H Move to the first line of the screen

M Move to the middle line of the
screen

L Move to the last line of the screen

G Move to the end of the file

gg Move to the beginning of the file

:n Move to line n

Table 2 shows the Vim commands for deleting text.

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 16

http://www.ibm.com/legal/copytrade.shtml

Table 2. Vim commands for deleting text
Command Action

d Delete region selected

dd Delete the entire current line

10dd Delete 10 lines, starting with the
current line

dw Delete words from the current
position onward

db Delete words from the left of the
current cursor position backwards

dl Delete the character at the
current cursor position

dh Delete the character to the left of
the current cursor position

d0 (zero) Delete text from the current
cursor position to the beginning of
the line

D | d$ Delete the entire line starting at
the current cursor position

x Delete the character at the
cursor's current position

X Delete the character before the
cursor's current position

Table 3 provides several other useful Vim commands.

Table 3. Common Vim commands
Command Action

ih Enter insert mode and insert at
the current cursor position

I Enter insert mode and insert at
the beginning of the current line

a Enter insert mode and append
after the cursor

A Enter insert mode and append to
the end of the current line

c Change the region selected

C Change the entire line starting at
the cursor's current position

o Create a new blank line beneath
the line in which the cursor is
currently located and move the
cursor to the beginning of the new

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 6 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

blank line

O Create a new blank line above the
line in which the cursor is
currently located and move the
cursor to the beginning of the new
blank line

r Replace a single character at the
cursor's current position

R Replace multiple characters
starting at the cursor's current
position and ending when exiting
insert mode

<Esc> Exit insert or visual mode

> or <Tab> Indent to the right the region
selected

< Indent to the left the region
selected

v Start highlighting characters

V Start highlighting entire lines

yy Yank/Copy the current line into
memory

10yy Yank/Copy 10 lines starting with
the current line into memory

p Put text yanked or deleted; if
characters were yanked (yw dw,
or D), put the characters after the
cursor's current position. If lines
were yanked, put the lines below
the cursor's current line.

P Same as p, but place characters
before the cursor's current
position or lines above the
cursor's current line

u Undo the last change

<Ctrl> R Redo

/<pattern> Search for the next pattern found,
and place the cursor at the
beginning of the pattern found

?<pattern> Search for the previous pattern
found, and place the cursor at the
beginning of the pattern found

n Repeat the last search

N Repeat the last search, but
reverse the search direction

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 16

http://www.ibm.com/legal/copytrade.shtml

!<cmd> Execute <cmd> outside the Vim
session

Line mode

Although command and insert modes are widely used, line mode is equally powerful
but sometimes not fully understood or used. Line mode enters into a line editor,
allowing you to process commands on single or multiple lines. Considering that vi
was named after the ex editor, it's only fitting that line mode puts you into an ex
editor.

To enter line mode, from command mode, simply type a colon (:). The cursor then
moves to the lower-left corner of the window. When you resume typing, all text
appears after the colon at the bottom of the window. When you click Enter, the line
mode command is evaluated and executed. If you decide not to execute the line
entered in line mode, click Escape to return to command mode.

When working with the line mode of the editor, keep two styles of commands in
mind. First, when you type a command, vi or Vim executes the command as is. If the
command executed pertains to modifying data, the current line will be the target.
However, with the second method, you can supply line numbers to process the
specified lines. To enter lines, after the colon, type the line number or range of lines
to process, separating the start and end range with a comma (,).

For example, to process only line 23, the command would begin with :23. If you
want to modify lines 2319 through 3819, you would type :2319,3819. To process a
command from a starting position of line 45 to the end of the file, replace the last line
argument with a dollar sign ($)—that is, :45,$.

The following commands are only the beginning of what you can execute in line
mode:

• :w <file name>: Write the file to disk. If an argument is supplied, the
editor attempts to write the data to <file name>.
Note: If you supply an argument and <file name> exists, the editor will not
overwrite the existing file's data.

• :w! <file name>: Write the file to disk and overwrite any data in the
file.

• :<x>,<y> w <file name>: Write lines <x> through <y> to <file
name>.

• :q: Attempt to exit the editor without saving.

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 8 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Note: If data has been modified, the editor will not exit until the file has
been saved or you exit without saving.

• :q!: Exit the editor without attempting to write the file to disk.

• :n: If editing multiple files, begin editing the next file in the edit list.

• :e <file name>: Edit <file name>.

• :e#: If editing two files, switch between files.

• :s/<str1>/<str2>/: Replace the first occurrence of <str1> with <str2>
on the current line.

• :1,$ s/<str1>/<str2>/g: Starting at line 1 and continuing
throughout the file, replace <str1> with <str2> globally.

• :r <file name>: Read <file name> into the current editor session.

• :<x>,<y> d: Delete lines <x> through <y>.

• :<x>,<y> y: Yank lines <x> through <y>.

Differences between vi and Vim

Although vi and Vim do have the same look and feel, they definitely have
differences. The following are just a few differences between these two powerful text
editors:

• vimscript: Using the internal scripting language vimscript, Vim allows
complex scripts to add extended functionality to the editor. In addition to
vimscript, Vim supports Perl, Python, Ruby, Tcl, and other languages.

• vimdiff: A useful command called vimdiff is bundled with the Vim
package. Using vimdiff, you can display multiple files next to each
other, similar to sdiff, as shown in Figure 6.
Figure 6. An example of vimdiff

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 16

http://www.ibm.com/legal/copytrade.shtml

• Editing a compressed file: To conserve space on a system,
administrators often compress log files or other large files. It never fails: A
file is compressed, and then someone asks you, "Hey, can you take a
look at this log from two months ago?" Rather than decompressing the
file, and then editing it with vi, Vim can edit the compressed file. Vim can
handle editing files compressed with bzip2, gzip, and zip.

• Editing an archived file: Vim also has the ability to edit files
concatenated by tar. When editing a .tar file, Vim displays a handy
screen allowing you to select which file in the archive you want to edit, as
shown in Figure 7. When you finish editing the file, simply save and exit
the file normally (:wq), and Vim returns to the display, allowing you to
select another file to edit in the archive, or you can quit from the selection
window (:q).
Figure 7. Selecting which file to edit in an achieved file using Vim

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 10 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

In the example shown in Figure 8, four ASCII text files were archived
using the tar command, and then Vim was used to select the second file
in the archive to edit.

Figure 8. Editing a file within an archive through Vim

• Split windows: Rather than switching back and forth from window to
window while editing multiple files, gVim allows you to open several
windows from existing files as well as create new files on the fly, as
Figure 9 shows.
Figure 9. Split windows in Vim

• Syntax highlights: Debugging someone's shell script or other code that
the editor didn't write originally can feel like an overwhelming task.
Thankfully, Vim has helped alleviate some of the headaches that come
with editing someone else's code. Using Vim, you can color-coad blocks
of code, making debugging much easier in shell scripts as well as in other

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 16

http://www.ibm.com/legal/copytrade.shtml

programming languages, as Figure 10 shows.
Figure 10. Syntax highlights

• Last cursor position: When editing a file, it's sometimes necessary to
exit the file and perform other tasks. But when you're ready to return to
the file, you've forgotten where you left off! Not to worry: Vim remembers
the last cursor position when exiting a file. This becomes extremely
helpful when modifying files that are several thousands of lines long.

• Multiple undo/redo operations: In the past, vi only allowed you to undo
your last change when editing a file. This was a great start, but it needed
to be increased. Sometimes, when writing scripts or other code, what may
seem like a good idea turns out not to be the best way to handle an issue,
so you must be able to back out of the last 10 changes you've made in
the file. Vim allows you to do just this.

• Visual mode: Vim allows for certain blocks of text to be selected using
"visual" mode. Using this mode, you can select any amount of text within
the file being edited, and then use a single command to affect the
highlighted text. For example, if the middle of a paragraph of text must be
removed, you simply type v to enter visual mode, move the cursor
through the text to be modified, then type d to delete the highlighted text.

How do I get Vim?

Now that you've seen a few of the enhancements and differences between vi and
Vim, you're probably saying, "I want Vim! Where do I get it?" Good news: Vim has
been ported to several different operating systems.

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 12 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Here are just a few of the platforms to which Vim has been ported:

• Amiga

• AIX

• BSD

• Cygwin

• IBM OS/2®

• Linux

• Apple Mac OS and Mac OS X

• Microsoft® MS-DOS®

• Microsoft Windows® 95 though Windows Vista®

• Microsoft Windows CE

• OpenVMS

Vim on Windows

So, you saw that Vim is available for Windows in the previous section, and now
you're saying, "I can use Vim on Windows? I want that!" You're in luck!

Simply download the latest version (currently version 7.1) of Vim, ported to
Windows, from the Vim Web site. The easiest method is to download the
self-installing executable file, execute it, and follow the steps. When installed, you
can right-click a file, click Edit with Vim (as shown in Figure 11 below, and violà!
you're now editing the file in Vim in Windows!

Figure 11. Editing a file with Vim in Windows

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 16

http://www.vim.org/download.php
http://www.ibm.com/legal/copytrade.shtml

Now that you've installed Vim on your Windows computer, you can enjoy the genius
behind Vim and forget about all the other text editors in Windows.

Conclusion

The vi editor started to pave the way for text editors in UNIX, and Vim has continued
along this path. After reading this article, my hope is that you've learned some new
things about the Vim editor, how to use its many features to help make your life
easier, and appreciate how such a simple concept as an editor has proven a stable
and robust application in the UNIX world and now most other operating systems. I
trust that if you haven't used Vim much, after learning the ins and outs of the editor,
you'll agree that no other editor can compare.

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 14 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Speaking UNIX: Check out other parts in this series.

• Wikipedia's AIX entry: Read Wikipedia's excellent entry on the AIX operating
system for more information about its background and development.

• Wikipedia's vi editor entry: Read Wikipedia for more information about the vi
editor.

• Wikipedia's VIM editor entry: Read Wikipedia's excellent entry on the Vim
editor.

• The Vim editor: Learn more about the Vim editor.

• The AIX and UNIX developerWorks zone provides a wealth of information
relating to all aspects of AIX systems administration and expanding your UNIX
skills.

• New to AIX and UNIX? Visit the New to AIX and UNIX page to learn more.

• developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

• AIX Wiki: Visit this collaborative environment for technical information related to
AIX.

• Podcasts: Tune in and catch up with IBM technical experts.

Get products and technologies

• IBM trial software: Build your next development project with software for
download directly from developerWorks.

Discuss

•
• AIX Forum

• AIX Forum for Developers

• Cluster Systems Management

• IBM Support Assistant Forum

• Performance Tools Forum

• Virtualization Forum

• More AIX and UNIX forums

ibm.com/developerWorks developerWorks®

The new and improved Vim editor
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 16

http://www-128.ibm.com/developerworks/views/aix/libraryview.jsp?search_by=speaking+UNIX+Part
http://en.wikipedia.org/wiki/AIX_operating_system
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Vim_(text_editor)
http://www.vim.org/index.php
http://www-128.ibm.com/developerworks/aix/
http://www-128.ibm.com/developerworks/aix/newto/
http://www.ibm.com/developerworks/offers/techbriefings
http://www-941.ibm.com/collaboration/wiki/display/WikiPtype/Home
http://www-128.ibm.com/developerworks/podcast/
http://www-128.ibm.com/developerworks/downloads/?S_TACT=105AGY06&S_CMP=art
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=747&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=905&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=907&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=935&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=749&cat=72
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=748&cat=72
http://www.ibm.com/developerworks/forums/dw_auforums.jsp
http://www.ibm.com/legal/copytrade.shtml

About the author

Adam T. Cormany
Adam Cormany is currently the manager of the National Data Center, but he has also
been a UNIX systems engineer, a UNIX administrator, and operations manager for
Scientific Games Corporation. Adam has worked extensively with AIX as well as in
Solaris and Red Hat Linux administration for more than 10 years. He is an IBM
eServer®-Certified Specialist in pSeries® AIX System Administration. In addition to
administration, Adam has extensive knowledge of shell scripting in Bash, CSH, and
KSH as well as programming in C, PHP, and Perl. You can reach Adam at
acormany@yahoo.com.

Trademarks

IBM, AIX, OS/2 are registered trademarks of International Business Machines in the
United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.
Microsoft, MS-DOS, Windows, and Windows Vista are registered trademarks of
Microsoft Corp in the United States, other countries, or both.

developerWorks® ibm.com/developerWorks

The new and improved Vim editor
Page 16 of 16 © Copyright IBM Corporation 1994, 2007. All rights reserved.

acormany@yahoo.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	What is Vim?
	Vim commands
	Line mode
	Differences between vi and Vim
	How do I get Vim?
	Vim on Windows
	Conclusion
	Resources
	About the author
	Trademarks

