
MYSQL™ DATABASE SCALE-OUT
AND REPLICATION FOR
HIGH-GROWTH BUSINESSES

Nick Kloski, Engineered Solutions Group

Sun BluePrints™ Online

Part No 820-6824-10
Revision 1.0, 11/4/08

Sun Microsystems, Inc.

Table of Contents

Introducing Scale-Out . 1

Defining Scale-Out . 2

MySQL Database Scale-Out Components . 3

MySQL Database Replication . 4

Statement- versus Row-Based Replication . 5

MySQL Replication Internals. 5

MySQL Replication Topologies . 6

Basic Scale-Out Architectures . 7

Read Scale-Out . 7

Application Partitioning . 9

Layering Techniques . 10

Linux Heartbeat . 10

Distributed Replicated Block Device (DRBD) . 12

DRBD and Replication . 13

DRBD Clusters, Application Partitioning, and Replication. 14

Guidelines for Implementing Scale-Out . 14

MySQL Monitoring and Professional Services . 15

Summary. 16

About the Author . 16

Acknowledgements. 16

References . 17

Ordering Sun Documents . 17

Accessing Sun Documentation Online . 17

Appendix: Overview of MySQL Replication Setup . 18

1 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
MySQL Database Scale-Out and Replication

It is widely recognized that MySQL is the most popular database software in the world.

Since its inception in 1995, there have been 11 million product installations around the

world in a wide variety of markets. There are more installations of MySQL in use today

than any other database architecture. From startup companies hoping to be the next

Web2.0 poster child to large global enterprises, the MySQL database architecture has

proven to be flexible, extendable, scalable, and more than capable of filling high-

capacity database roles in very different venues.

The core MySQL architecture is offered free for anyone to download and use, helping

make the MySQL software popular for use in a wide variety of roles. However, the ease

by which instances can be deployed often brings challenges: Over time, companies can

find themselves dealing with multiple disparate MySQL instances and need to tackle

the challenge of how to scale their MySQL installations intelligently both for scale and

for resiliency in case of outages.

This paper addresses the primary ways MySQL installations can scale to meet increasing

user demands, while still providing the flexibility and ease of use that single

installations offer.

Introducing Scale-Out
MySQL costs nothing to use for the core of the database system. Companies of all sizes

are encouraged to download and put into production MySQL instances in as wide and

as large a configuration as they desire to use. Because of this, many times MySQL is

used to do initial proof of concept testing as the back-end datastore for various projects.

As those projects prove to be feasible, the MySQL architecture is typically more than

able to handle the initial demand generated by associated application.

At some point, however, the demands of the user base require the MySQL database to

scale to provide response times that exceed the capabilities of the underlying server

hardware. It is at this point that the MySQL architecture needs to extend beyond the

initial server to provide more capacity to meet demand. It is at this point that

intelligent planning for scaling out will not only solve problems with maintaining

response time for end users, but can also provide resiliency against hardware outages

that would otherwise bring the database down.

2 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
Defining Scale-Out
When Database Administrators (DBAs) talk about scale-out, they are referring to being

able to serve an ever increasing number of requests against the database. Specific

performance of a request once it reaches the database is affected by such factors as

application logic and underlying CPU power, memory density, and I/O interconnect.

Note – A discussion of specific database tuning is beyond the scope of this paper. Instead, this
paper focuses on Enterprise-level considerations and entire-server scalability.

Over time, as applications become more popular, the capability of one MySQL instance

may not be sufficient to serve those needs. In the MySQL database world, the term

scale-out refers to improving application performance and scalability on an

incremental, as-needed basis by adding multiple replicated database servers on low-

cost commodity hardware (Figure 1).

Figure 1. Basic database read scale-out.

This approach is in opposition to another method of scaling: scale up. In a scale-up

scenario, an existing server's hardware is increased, thus being able to serve more

requests by an increase of back-end power.

There are advantages to both methods:

• Scale-up (also called Vertical Scaling)
– Must run on more expensive SMP hardware to allow for scaling.

– Sometimes runs proprietary software to allow for scaling.

– Locked in to one hardware/software platform.

– Once top is reached for a specific hardware platform, entire server must be

replaced (fork lift upgrade).

• Scale-out (also called Horizontal Scaling)

– Accomplished with commodity Intel/AMD hardware.

– Runs on open source software/operating systems.

– Can leverage platform independence to allow scaled MySQL installations to run

seamlessly on a variety of servers.

ReadsUpdates

Replication

3 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
– Adding commodity servers allows for sustained and improved end-user experi-

ence.

The MySQL server was not originally designed to run on very expensive and hugely

complex servers. Instead, it is designed to easily connect smaller commodity servers

together, and includes replication technologies that allow for rapid scale-out of

databases on low-cost commodity hardware. The remainder of this paper focuses on

MySQL scale-out and replication.

MySQL Database Scale-Out Components

The following components can be used to implement scale-out in a MySQL database

architecture:

• MySQL Replication

The definition of MySQL Replication is simple: the duplication of data changes to

more than one location. Replication can be either synchronous or asynchronous.

With synchronous replication, new data entering a scaled MySQL architecture can

be accepted by and written to all database servers at the same time. In contrast,

with asynchronous replication the changes and new data go first to one master

server, and are sent at a later time to secondary servers.

• MySQL Cluster

The MySQL Cluster product is a shared nothing in-memory database that allows an

enterprise to increase both redundancy and capacity by adhering to the idea of

more copies in more locations. By adding data nodes, the underlying database

runs on more physical servers and can be accessed correspondingly by more

clients. Adding MySQL Replication to Clustering can be used to achieve

geographical redundancy (for such purposes as disaster recovery and backups) by

taking a running cluster of multiple servers, and replicating that cluster to some

other geographical place.

• Linux Heartbeat
The Linux operating system offers a small piece of software that plays an

important role in MySQL Clustering. Although it is not required, by adding the

heartbeat into the MySQL Cluster, the operating system works hand-in-hand with

the database to provide notification to the other side of a cluster when one side

goes down, because of hardware failure or other major event. The Linux Heartbeat

manages IP takeovers and provides notification to the MySQL framework that a

failure has happened and that a failover process needs to be initiated.

• Load Balancing
There are several methods the DBA can utilize to intelligently route the incoming

user requests to a scaled MySQL architecture. Through the use of load balancers,

incoming user requests get routed to the appropriate MySQL database. In a

MySQL scale-out scenario, the load balancer can be either hardware based or

4 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
software based. An example of hardware based balancing is an intelligent router

that can intercept incoming requests and knows to which MySQL server to send

those requests. Software based load balancing is also called application logic. The

end application, when it receives a read/write/update from a user, can have the

intelligence built into the application itself to route the request to the correct

MySQL server.

• Distributed Replicated Block Device

Distributed Replicated Block Device (DRBD), as the name suggests, creates block-

level replication between different physical servers. The DRBD software is the main

component that enables synchronous replication.

In addition, there are a great many shared storage hardware devices and clustering

agents for monitoring MySQL replicated clusters, but these are not be covered in depth

in this document.

Note – Not all of these technologies are included as part of the MySQL Community download;
some services may be fee-based and may require a subscription to MySQL Enterprise. See
http://mysql.com/products/enterprise/features.html for current informa-
tion on included features.

The remainder of this paper discusses these components and describes how they can be

employed in MySQL scale-out architectures.

Target Uses for MySQL Replication

A combination of these components can be employed to solve problems common to

many MySQL implementations. The most simple use case for replication is for pure

backup purposes against failure of the Master server. By utilizing a simple Master/Slave

setup, data that is sent to the active server gets copied asynchronously to a slave server,

and if the active server ever fails, the replication target can take over.

More complex scenarios for replication involve Business Intelligence scenarios where

the back-end database can be replicated to another server upon which entirely different

analytic data investigation techniques can be applied. Scale-out architectures can

provide higher levels of performance and flexible growth. And High Availability (HA)

implementations can allow for constant uninterrupted access to database resources,

making the implementation resilient to any single hardware outage.

MySQL Database Replication

MySQL 5.1, the latest version of the software as of this writing, provides new support

for row-based replication. Previous MySQL versions (5.0 and below) supported

statement-based replication. In addition, a combination of statement-based and row-

http://mysql.com/products/enterprise/features.html

5 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
based replication can be used in MySQL 5.1. The main difference between a

statement and a row for purposes of replication is that a statement is generated

through structured query language, while row based replication is based on the raw

data in each row.

Before the introduction of MySQL 5.1 support for row-based replication, care had to be

taken when utilizing statement-based replication to fully optimize the statement to

avoid performance bottlenecks. Such performance problems could be generated

through an inefficient query structure that asked for multiple small-result based data,

while the overarching query was complex. At times the performance hit for returning

such a query was unavoidable. Now in MySQL 5.1, replication can not only be

accomplished with statement-based replication, but also with row-based, or even a

mixture of the two.

Statement- versus Row-Based Replication

Starting in MySQL 5.1, DBAs have the choice of using statement-based or row-based

replication, or a combination of the two. Statement-based replication is best for

applications that do not make heavy use of non-deterministic functions or system calls

such as SELECT users(). MySQL statement-based replication produces small binary log

files, and a binary log can be used to audit the database. Due to the more efficient

binary logging, statement-based replication can process more transactions per second

in many cases.

With row-based replication, everything (i.e., an entire row) can be replicated. Fewer

locks are used for many DML statements on both master and slave servers using row-

based replication. In addition, row-based replication can result in faster application of

data changes on slave servers, especially for objects with primary keys.

MySQL Replication Internals

Figure 2 illustrates the process of replication in MySQL, assuming a MySQL Master and

Slave setup. The mysqld daemon on the master server is the process that interacts with

the incoming user requests. READS and SELECTS are served out, while UPDATES are

written to disk, but also written too what is called a binary log or binlog. This binlog is

indexed and becomes the basis for replicating those UPDATES to the slave server. The

binlog from the master server is sent to the mysqld daemon on the slave server, which

understands that a replication event needs to happen.

6 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
Figure 2. MySQL replication internals.

To handle the incoming binlog stream, MySQL sends the replication binlog to a special

process, the I/O Thread, which is responsible for emulating an actual write event to

that slave server's binlog. On the slave server, this new replication thread (the

incoming binlog from the master) is written to a temporary log on the slave server,

called the relay binlog. The relay binlog is then fed as a normal SQL thread to the

database on the slave server, which is responsible for two things. The replication

stream, full of changes to the data is written to on-disk storage, and is also funneled at

the same time to the slave server's binary log.

This slave server's binlog, if desired, forms the basis for cascading replication down the

line to other servers. Once a binlog exists on any MySQL server, whether that server is a

master or a slave, that binlog can be used for further replication to other slave servers.

Because the slaves control the replication process, individual slaves can be connected

and disconnected from the server without affecting the master's operation. Also,

because each slave remembers the position within the binary log, it is possible for

slaves to be disconnected, reconnect and then “catch up” by continuing from the

recorded position. Note, however, that in failback scenarios, care should be taken to

ensure that the slaves rejoins the replication group successfully, and that any changes

made to the online members of the group are also replicated, not just ongoing writes.

MySQL Replication Topologies
Multiple topologies are supported by MySQL replication, as seen in Figure 3. The

simplest replication topology is a single master/slave configuration. Configurations

with one master and multiple slaves are also supported.

MySQL Master

mysqld

updates
selects updates

index &
binlogs

data

7

43
2

5

6

1

MySQL Slave

mysqld

I/O Thread

SQL Thread

binlog data

Replication

7 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
More complex topologies include multi-master configurations, with feature two or

more master servers. While these configurations are supported, care must be taken to

ensure that dataspaces are not shared between the master servers. If the master is set

up incorrectly in a multi-master configuration, overwriting of data can occur.

One topology that is not supported is a multi-source configuration, with multiple

masters updating a single slave server.

Figure 3. MySQL replication topologies.

Basic Scale-Out Architectures
Over time, many databases need to expand in their ability to respond to increases in

user requests. Others may need to be able to withstand hardware failures without

downtime, and look for high availability solutions. MySQL replication is a means to help

solve these common problems.

Read Scale-Out

The most common use of databases is to serve out information stored in the database

to users requesting that data. A common problem in growing databases is the need to

be able to serve more reads than writes. This situation occurs when the application

accessing the database becomes more popular and overwhelms the originally

provisioned hardware. The problem, therefore, is one of being able to server more and

more read operations while correspondingly being able to serve slightly more

operations that modify the database. This approach is called read scaling, and is the

most common form of replication.

Master Slaves

Master Slaves Slaves

Master Slave

Masters Slave (Multi-Source)

Circular (Multi-Master)Master Master (Multi-Source)

Supported
with caution

Supported

Not Supported Supported

8 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
A basic read scale-out architecture is shown in Figure 4. This architecture adds multiple

servers that are designed to handle READ operations, and is well-suited for read-

intensive applications. All database writes are served by one master server. The

database is replicated on multiple slave servers, and these slaves handle the read

requests.

Figure 4. Basic read scale-out architecture.

Asynchronous Replication

It is actually quite expensive, in database

processing terms, to make an update or

addition to a database. It is much easier to

provision for multiple READ operations on

multiple servers and allow the main

updating to happen on the Master server.

Unlike clustering, MySQL replication sends all updates to the database on the master

server, while read operations hit any number of read-scaled slave servers. The updates

to the master server are made and committed to the database like they always have

been. Asynchronous replication (hereafter called replication unless specified

otherwise) enables those updates to be sent to any number of slave servers at a later

time than the updates are made and committed to the master server. Thus, updates

made to the database may not be immediately available to reads made against the

slave servers. This effect can be seen on many large social media Web sites where

updates that a user makes are seen by that user, but it takes some time for those

updates to show up for other users using the same site.

Load Balancing

The MySQL server includes replication technologies that allow for rapid scale-out of

databases on low-cost commodity hardware. The ability to easily connect many smaller

servers together provides flexibility, as an organization can use any sort of replication

targets to solve a certain problem. Because of this flexibility, however, there are no

unifying technologies in the line that act as general MySQL proxy servers for

replication. At the current time, while several MySQL proxy applications are in

development, none has risen to the level of a fully developed product. As such, the

Load Balancer or Application Logic

Master Slave

Reads

Slave

ReadsWrites and Reads

Replication

- Write to one master
- Read from many slaves
- Perfect for read intensive apps

- Write to one master
- Read from many slaves
- Perfect for read intensive apps

9 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
main issue an organization needs to consider when moving to a scaled-out architecture

is the actual separation of incoming user SELECT/READ/WRITE requests to separate

MySQL servers.

Load balancing is needed in a MySQL read scale-out architecture to separate user

actions before they reach the scaled back-end database servers. When moving to a

replicated environment, there is no intermediary that makes this possible. Either a

hardware or software-based load balancer is required.

For the hardware-based solution, the load balancer is a piece of specialized hardware

that is designed to intelligently read the incoming user requests and includes logic to

send those requests to specific MySQL servers on the back end. The same end result can

be accomplished with a software-based approach. This requires modification of the

application itself, so that the application knows about the replication topologies

existent on the back end and routes user READ requests accordingly to the newly added

read-only servers.

Application Partitioning

Application partitioning, or sharding, is another technique that can be considered to

enable MySQL scale-out. The term shard means “a piece of,” and is used in this context

to refer to the distribution of write operations, not reads.

Figure 5. Application partitioning, or sharding.

Whereas the read replication has multiple read-only copies of the database, sharding or

application partitioning still has multiple physical servers, but sections of the main

database are spread out between those servers (Figure 5). As an example, assume the

end users of the database are categorized by userid. In this case, the deployment can

be scaled to three servers, with one-third of the userid range residing on each of the

- Partitioning across multiple databases
- Read from many slaves
- Higher complexity

- Partitioning across multiple databases
- Read from many slaves
- Higher complexity

Load Balancer or Application Logic

ID 1-999 ID 2000-2999

Writes & Reads

Replication

Reads

ID 1000-1999

10 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
three servers. Assuming the load of all of the users at any given time is equally

distributed, then those servers should therefore be only 1/3 as busy as a single server

handling all the database functions.

In a pure sharding configuration, as shown in this example, a loss of any server will

cause an outage to the users on that particular server. In a pure read-replication setup,

the loss of a slave server will only cause a temporary outage for the end user, until the

load balancing mechanism sends the displaced users to one of the remaining servers.

Layering Techniques

While the techniques introduced in this paper can be applied as a single technique,

they can also applied together to give the benefits of both/all strategies. For example:

• Read-replication through replication slaves helps to scale reads but is vulnerable to

the master server having an outage (in which case only reads will be possible).

• Application partitioning/sharding helps to scale writes but is even more vulnerable to

server outage since there are physically more servers (in which case no reads or

writes will be possible on the failed server).

• Sharding plus replication slaves offers scalability for both reads and writes (where a

master server outage will still prevent updates to that server but READs will still be

available).

When thinking about layering these techniques, do not consider the servers as the

basic building block for replication. Even for small installations, there is often a need for

an organization to create another copy of the entire database setup in another location

for Disaster Recovery (DR) purposes. If something happens to the main datacenter, then

the alternate datacenter can take over.

Replication can be used for geographic redundancy. For any entire MySQL architecture,

that architecture can, through replication, be re-created to another entire datacenter.

This process is asynchronous, as it is with normal replication, but the failover

datacenter will have a reasonably up-to-date copy of your data when the failure

happened.

Caution – Geographic Replication from one datacenter to another does not have auto-

mated failover, nor automatic resynchronization of data once your main site has
come back online!

Linux Heartbeat
The Linux operating system contains a heartbeat utility that allows for two servers (or

groups of servers) to use a connection between them to determine if either of the

servers has encountered an error and has gone down. This allows one group of servers

to act as the main MySQL group and the other to act as stand by, ready to pick up if the

main one goes down.

11 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
An example configuration employing the Linux heartbeat mechanism is shown in

Figure 6. Messages are sent between the master and slave server to determine if the

other server is running. A virtual IP address is used to direct incoming requests to the

active server. In this example, the system is operating normally and all requests sent to

the virtual IP address 192.168.0.50 are directed to the master server’s private IP address

of 192.168.0.30.

In this configuration, the alternate (slave)

server group is updated by asynchronous

replication, and therefore has a reasonably

updated set of data in case of a failover.

However, it is still asynchronous replication:

when a failure of the main server group

initiates a failover, the standby server group

might have slightly out-of-date writes as

writes made to the master server may not

have been replicated to the slave server.

Figure 6. Linux heartbeat and MySQL replication.

If the master server fails, the Linux heartbeat mechanism detects this and

automatically remaps the virtual IP address used by the clients to the private IP address

of the slave server, as shown in Figure 7. Thus, user requests are automatically and

transparently re-routed to the slave server in the event of a master server failure.

Figure 7. Linux heartbeat and MySQL replication, after a failure occurs.

After a failure occurs and the service has failed over to the slave server, procedures are

needed to fail back to the original master MySQL server after the error condition has

been resolved. Many times, the failover mechanism from the main servers to the

backup/replicated servers is well known and tested, but the recovery process can be

Private IP
192.168.0.30

Master
MySQL
Server

Slave
MySQL
Server

Linux Heartbeat

Virtual IP
192.168.0.50

MySQL

Private IP
192.168.0.40

MySQL

Asynchronous
MySQL Replication

Private IP
192.168.0.30

Master
MySQL
Server

Slave
MySQL
Server

Linux Heartbeat

Virtual IP
192.168.0.05

MySQL

Private IP
192.168.0.40

MySQL

Potential for losing some transaction in a fail-over

12 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
longer and more complex than anticipated. There is no “perform reverse replication”

command in MySQL and recovering essentially in a backwards direction can sometimes

be complex.

The Linux heartbeat facility typically requires a serial connection between servers to

implement. This solution is open source and easy to configure, making it inexpensive to

implement and maintain. Once implemented, the virtual IP management is automatic.

Configuring the Linux heartbeat functionality can be useful when deploying groups of

servers in separate datacenters. While replication between these groups of servers does

not have any facility in the MySQL architecture for automatic failover, the Linux

heartbeat can be used to implement auto-failover.

Distributed Replicated Block Device (DRBD)
MySQL replication mechanisms can be used to scale both READ and write (UPDATE,

INSERT, DELETE) functions. Geographic replication can also be implemented to provide

some security in case of a failure of an entire group of servers. Two main drawbacks,

however, still exist with the approaches mentioned up to this point in the paper:

• Asynchronous replication raises the possibility of having a less-than-updated version

of the MySQL database serving customers in case of a failover.

• Recovery times for to move back to the original database topology is somewhat

complex.

Unlike asynchronous replication, the Distributed Replicated Block Device (DRBD) feature

in MySQL helps solve these problems by having all copies of all data on all servers be

fully updated. Then, if a master server failure occurs, all slave servers have updated

copies of the database available.

The DRBD acronym can be defined as:

• Distributed (D)—Runs across multiple servers.

• Replicated (R)—Performs database replication duties.

• Block (B)—Replication happens at a block/hardware level, not at the database level.

• Device (D)—Implements a device driver that performs the synchronization, not at the

database level.

The DRBD feature of MySQL allows for synchronous replication of the blocks of data

underlying the database itself. DRBD runs over standard IP networks between the

servers (without the need for special hardware), with failover and virtual IP addresses

managed by the Linux heartbeat program (Figure 8). DRBD can offer great performance

because the complexity of any database is hidden from DRBD — DRBD cares only about

the underlying block data and not about database complexity at all. DRBD does

introduce a bit more complexity during the setup phase, but the payoffs later on for

replication and recovery more than make up for the initial setup steps.

13 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
Figure 8. Linux heartbeat and distributed replicated block device (DRBD).

DRBD synchronously updates both servers so that in case of a database server failover

there are no out-of-date copies of the database. Also, when the cause of the server

failure has been resolved, DRBD will copy, at a block level, the running database back

over to the main server, thus making all databases current. This function allows for

recovery to be far less complex and time consuming than otherwise would have taken

place in a traditional replication scenario. Because the database is current at all times,

database administrators do not have to concern themselves with the intricacies of

merging two databases back together.

DRBD and Replication
While DRBD can be used as a stand-alone function of MySQL Replication, the real power

in this technology is seen in combination with other MySQL features. Using DRBD in

conjunction with read replication (Figure 9) allows for the database servers (which are

typically more expensively full featured from a hardware perspective) to synchronously

record write requests, while read replication slaves serve the bulk of the incoming READ

operations. Managed by the Linux heartbeat function, the single active database server

can suffer a failure, the passive server will become active, and there is no loss in any

user data, nor do any users experience an outage.

Private IP
192.168.0.30

Active
Server

DRBD

Passive
Server

IP Engagement

Virtual IP
192.168.0.50

MySQL

Private IP
192.168.0.40

Synchronous
Block Replication DRBD

MySQL

14 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
Figure 9. DRBD with MySQL replication.

DRBD Clusters, Application Partitioning, and Replication

One final example brings all of the features and uses cases discussed previously into

one topology. Figure 10 shows a topology featuring DRBD, application partitioning, and

replication. By using DRBD for server coherence, application partitioning for write

scalability, and multiple read replication slaves for read scalability a database can be

made fully redundant as well as handle increasing numbers of user requests. If

needed, this architecture can also be geographically replicated asynchronously to a

failover datacenter for disaster recovery purposes.

Figure 10. DRBD clusters, application partitioning, and replication.

Guidelines for Implementing Scale-Out
The following guidelines are relevant when planning for MySQL scale-out and

replication:

Active
Server

Passive
Server

DRBD
MySQL

Private IP
192.168.0.30

DRBD
MySQL

Private IP
192.168.0.40

IP Management

Virtual IP
192.168.0.50

MySQL

Shard 1 Shard 2

IP Management IP Management

MySQL

DRBD
MySQL

DRBD
MySQL

MySQL

DRBD
MySQL

DRBD
MySQL

Load Balancer

15 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
• Don't think synchronously

Not every access to the database needs to happen at the same time.

• Don't think vertically

Often times the best performance can be achieved by adding commodity servers

to serve specific segments of the architecture.

• Don't mix transactions and business intelligence

Since it is easy to set up replication slaves, run business intelligence applications

against those slaves, saving the main server to serve write requests.

• Avoid mixing hot and cold data

When setting up replication slaves, make sure to put more static tables onto the

read slaves, and keep frequently updated tablespaces on the main MySQL server.

• Don't forget the power of memory

Sufficient memory is needed to successfully handle incoming transactions.

Configuring adequate memory can help avoid many of the problems that would

otherwise force an enterprise to adopt a complicated replication strategy.

An overview of the basic setup for MySQL replication is included in “Appendix: Overview

of MySQL Replication Setup” on page 18.

MySQL Monitoring and Professional Services
The MySQL organization offers many ways to help evaluate and create replication

architectures. On the software side, the MySQL Enterprise Monitor application helps a

database administrator see the status of replication targets, determine what problems

might cause a replication slave to not receive data, and check the current status of

replication activities on a running server. Access to the Enterprise Dashboard comes

with a subscription to the MySQL Enterprise Silver product support level, while more

advanced features such as the Replication Advisor and Memory Advisor come as part of

the MySQL Enterprise Gold support level.

While the core MySQL database is completely free to download and use, additional

support is available to help enterprises maximize their MySQL experience. For example,

MySQL Enterprise product includes the following components at varying levels of

subscription:

MySQL Enterprise Unlimited is another

option that includes production support

across the entire enterprise for one flat fee,

and includes support for an unlimited

number of MySQL servers.

• MySQL Enterprise Server software — the most reliable, secure and up-to-date version

of the MySQL database software

• MySQL Software Update Service—provides proactive alerts regarding new product

releases, security issues and bugs

• MySQL Knowledge Base — a valuable self-help resource allows users to search a

comprehensive library of technical articles to resolve difficult problems on the most

popular database topics

16 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
• MySQL Production Support — provides support from experts inside the MySQL

organization who can provide advice on database performance, design, and

implementation strategies and can help solve problems quickly and completely

• MySQL Monitoring and Advisory Services — work as a virtual DBA assistant to help

enforce MySQL-recommended best practices across all MySQL servers

Note – See http://www.mysql.com/products/enterprise/features.html for
more information on MySQL Enterprise features.

Summary
The MySQL database, the most popular database in use today, includes features that

businesses rely on for their day-to-day operations of Web serving and enterprise

deployments. Though large amounts of money are charged for other databases on the

market, the MySQL database offers something those other databases do not: the ability

to deploy an enterprise-quality database on virtually any hardware, at no-cost.

As application popularity increases over time and the demands on back-end databases

grow, it is necessary to consider how to intelligently grow and scale MySQL

deployments. Improperly scaling MySQL installations can adversely affect performance

and cause undue complexity in database infrastructure. This paper provided

information on approaches to MySQL database scale-out to address these problems.

Careful planning using this document as a guide is a starting point. Additional support

is available through the vibrant and responsive MySQL user base and via professional

support services, such as the MySQL Production Support offerings. With planning,

MySQL database deployments can be managed to scale to meet the demands of

database growth patterns now and into the future.

About the Author
Nick Kloski is a Web2.0 Solutions Architect in the Web/HPC group in the Systems

Technical Marketing Group at Sun. In his 10 years at Sun, Nick has had a wide exposure

to both Sun and competitive systems, including systems administration work, over six

years of technical Field Service, internal QA testing, and as a member of the Technical

Marketing Department. In the role of Web2.0 Solutions Architect, Nick is responsible for

being aware of market trends and discovering ways Sun technology can help uniquely

solve customer problems.

Acknowledgements
The author would like to recognize Jimmy Guerrero of the MySQL Marketing Team for

his contributions to this article.

http://www.mysql.com/products/enterprise/features.html

17 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
References

MySQL Database: http://www.sun.com/software/products/mysql/index.jsp.

MySQL Documentation: http://dev.mysql.com/doc/index.html

MySQL Enterprise:

http://www.mysql.com/products/enterprise/features.html

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If

you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is
http://docs.sun.com/

To reference Sun BluePrints Online articles, visit the Sun BluePrints Online Web site at:
http://www.sun.com/blueprints/online.html

http://docs.sun.com
http://www.sun.com/blueprints/online.html
http://www.sun.com/software/products/mysql/index.jsp
http://dev.mysql.com/doc/index.html
http://www.mysql.com/products/enterprise/features.html

18 MySQL Database Scale-Out and Replication Sun Microsystems, Inc.
Appendix: Overview of MySQL Replication Setup
The following high-level steps provide an overview of the basic setup of MySQL

replication. These steps do not offer specific commands needed to create a MySQL

replication slave, but are included as a conceptual tool to provide an overview of the

replication process.

Note – For more detailed information on replication setup, refer to the MySQL documenta-
tion for the specific MySQL version being used. For example, the MySQL 5.1 Reference Man-
ual, chapter 15 “Replication” and the MySQL 5.0 Reference Manual, chapter 15 “Replication”
both describe how to set up complete replication of a MySQL server on releases 5.1 and 5.0
respectively.

1. Ensure master and slave servers are configured with unique IDs.

2. Grant replication privileges to the slave

3. Edit master/slave my.cnf files (binary logging, etc.)

4. Restart master server

5. Copy initial master data to slave(s):

– Cold Backup/Restore

– Mysqldump — master-data option

– LOCK tables and file copy

6. Issue MySQL show master status command to record the index file and its

position

7. Issue MySQL stop slave command

8. Issue MySQL change master command

– master_host=, master_user=, master_password,master_log_file=,

master_log_pos

9. Issue MySQL start slave command

http://dev.mysql.com/doc/refman/5.0/en/replication.html
http://dev.mysql.com/doc/refman/5.1/en/replication.html
http://dev.mysql.com/doc/refman/5.1/en/replication.html

MySQL Database Scale-Out and Replication On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

© 2008 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, and MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and

other countries. Information subject to change without notice. Printed in USA 11/08

	Table of Contents
	MySQL Database Scale-Out and Replication
	Introducing Scale-Out
	Defining Scale-Out
	MySQL Database Scale-Out Components

	MySQL Database Replication
	Statement- versus Row-Based Replication
	MySQL Replication Internals
	MySQL Replication Topologies

	Basic Scale-Out Architectures
	Read Scale-Out
	Application Partitioning
	Layering Techniques

	Linux Heartbeat
	Distributed Replicated Block Device (DRBD)
	DRBD and Replication
	DRBD Clusters, Application Partitioning, and Replication

	Guidelines for Implementing Scale-Out
	MySQL Monitoring and Professional Services
	Summary
	About the Author
	Acknowledgements
	References
	Ordering Sun Documents
	Accessing Sun Documentation Online
	Appendix: Overview of MySQL Replication Setup

