
BigAdmin Submitted Article: Assigning System Resources to Solaris 10... http://www.sun.com/bigadmin/content/submitted/assign_resources.jsp

1 sur 4 25.05.2008 11:28

Assigning System Resources to Solaris 10 Zones Without Reboot
Gabriel Simona, May 2008

Introduction

Assigning some resources, such file systems, raw devices, tape devices, IP addresses, and so

on, from the global zone to a non-global zone in the Solaris 10 Operating System generally

requires a reboot of the non-global zone. In a production environment, it's unfortunate but

necessary to assign resources and reboot, and the Solaris administrator has to wait for the

database administrator and the backup operator's approval before rebooting the zone. Often

reboot opportunities occur only for a few minutes at night on the weekend.

The way to avoid this nuisance, at least with file systems and raw devices, is to organize the

zone's configuration at first and later deliver the administrative operations in a suggested order, as follows.

The methods described here apply only to environments in which all the administrative operations on file systems will be performed from the global zone. These

methods work fine with any release of the Solaris 10 OS for SPARC platforms, even with Sparse Zones or Whole Root Zones, but these methods have not been

tested on the Solaris 10 OS for x86 platforms or Branded Zones because of their distinct nature.

The types of file systems to be considered here are UFS, ZFS and LOFS (Loopback File System). In the case of ZFS, the file systems must be set with legacy

mount point, which means that they do not have a mount point by default. The raw devices considered here are the ones created with Solaris Volume Manager,

although the concepts here could be exploited for other Solaris devices.

File Systems

First, we create the file systems and directories in the global zone:

newfs /dev/md/rdsk/d35
zpool create my_zpool c0t2d0
zfs create my_zpool/my_zfs
zfs set mountpoint=legacy my_zpool/my_zfs
mkdir /my_lofs

Then we configure the non-global zone called my_zone:

zonecfg -z my_zone
zonecfg:my_zone> add fs
zonecfg:my_zone:fs> set dir=/my_ufs
zonecfg:my_zone:fs> set special=/dev/md/dsk/d35
zonecfg:my_zone:fs> set raw=/dev/md/rdsk/d35
zonecfg:my_zone:fs> set type=ufs
zonecfg:my_zone:fs> end
zonecfg:my_zone> add fs
zonecfg:my_zone:fs> set dir=/my_zfs
zonecfg:my_zone:fs> set special=my_zpool/my_zfs
zonecfg:my_zone:fs> set type=zfs
zonecfg:my_zone:fs> end
zonecfg:my_zone> add fs
zonecfg:my_zone:fs> set dir=/my_lofs
zonecfg:my_zone:fs> set special=/my_lofs
zonecfg:my_zone:fs> set type=lofs
zonecfg:my_zone:fs> end
zonecfg:my_zone> commit
zonecfg:my_zone> exit
#

To mount file systems in a non-global zone at boot, we do the following:

zoneadm -z my_zone reboot

However, we can mount every file system in the zone while in the online state, for example, as in the following, where /my_zone is the zonepath:

mkdir /my_zone/root/my_ufs
mkdir /my_zone/root/my_zfs
mkdir /my_zone/root/my_lofs
mount -F ufs /dev/md/dsk/d35 /my_zone/root/my_ufs
mount -F zfs my_zpool/my_zfs /my_zone/root/my_zfs
mount -F lofs /my_lofs /my_zone/root/my_lofs

Note that the mount point directories must be created previously in the zone.

Now, executing the df command in the non-global zone returns something like this:

zlogin -l root my_zone df -h
Filesystem size used avail capacity Mounted on
/ 6.9G 5.5G 1.4G 81% /
/dev 6.9G 5.5G 1.4G 81% /dev
proc 0K 0K 0K 0% /proc
ctfs 0K 0K 0K 0% /system/contract
swap 13G 272K 13G 1% /etc/svc/volatile
mnttab 0K 0K 0K 0% /etc/mnttab
fd 0K 0K 0K 0% /dev/fd
swap 13G 16K 13G 1% /tmp
swap 13G 32K 13G 1% /var/run
/dev/md/dsk/d35 6.9G 5.5G 1.4G 81% /my_ufs
my_zpool/my_zfs 7.9G 2.0G 5.8G 27% /my_zfs
/my_lofs 22G 15G 6,1G 72% /my_lofs

However, in the global zone, the same command displays a bit different output:

df -h
Filesystem size used avail capacity Mounted on
/dev/md/dsk/d0 22G 15G 6,1G 72% /
/devices 0K 0K 0K 0% /devices
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 13G 1,1M 13G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
/platform/sun4u-us3/lib/libc_psr/libc_psr_hwcap1.so.1
 22G 15G 6,1G 72%
 /platform/sun4u-us3/lib/libc_psr.so.1
/platform/sun4u-us3/lib/sparcv9/libc_psr/libc_psr_hwcap1.so.1
 22G 15G 6,1G 72%
 /platform/sun4u-us3/lib/sparcv9/libc_psr.so.1
fd 0K 0K 0K 0% /dev/fd
swap 13G 19M 13G 1% /tmp
swap 13G 80K 13G 1% /var/run
/dev/md/dsk/d3 20G 6.8G 13G 35% /my_zone
/dev/md/dsk/d35 6.9G 5.5G 1.4G 81% /my_zone/root/my_ufs
my_zpool/my_zfs 7.9G 2.0G 5.8G 27% /my_zone/root/my_zfs

Instead, the mount command for my_zone delivers the following lines, partially cut off, both from the global and the non-global zone:

zlogin -l root my_zone mount | awk '{print $1, $2, $3, $4}'
/ on / read/write/setuid/devices/intr/largefiles/logging/xattr/
onerror=panic/dev=154001f
/dev on /dev read/write/setuid/devices/zonedevfs/dev=4e0000e
/proc on proc read/write/setuid/nodevices/zone=identity/dev=4bc000f
/system/contract on ctfs read/write/setuid/nodevices/zone=identity/
dev=4b8000f
/etc/svc/volatile on swap read/write/setuid/nodevices/xattr/zone=
identity/dev=4c4002b
/etc/mnttab on mnttab read/write/setuid/nodevices/zone=identity/
dev=4c0000f
/dev/fd on fd read/write/setuid/nodevices/zone=identity/dev=4e4000f
/tmp on swap read/write/setuid/nodevices/xattr/zone=identity/dev=
4c4002c

dev=4c4002d
/my_ufs on /my_ufs read/write/setuid/devices/intr/largefiles/logging/
xattr/onerror=panic/dev=1540048
/my_zfs on my_zpool/my_zfs read/write/setuid/devices/exec/xattr/

BigAdmin Submitted Article: Assigning System Resources to Solaris 10... http://www.sun.com/bigadmin/content/submitted/assign_resources.jsp

2 sur 4 25.05.2008 11:28

dev=4c0000f
/dev/fd on fd read/write/setuid/nodevices/zone=identity/dev=4e4000f
/tmp on swap read/write/setuid/nodevices/xattr/zone=identity/dev=
4c4002c
/var/run on swap read/write/setuid/nodevices/xattr/zone=identity/
dev=4c4002d
/my_ufs on /my_ufs read/write/setuid/devices/intr/largefiles/logging/
xattr/onerror=panic/dev=1540048
/my_zfs on my_zpool/my_zfs read/write/setuid/devices/exec/xattr/
atime/dev=401000b
/my_lofs on /my_lofs read/write/setuid/devices/dev=1540000
#
mount | grep my_zone | awk '{print $1, $2, $3, $4}'
/my_zone/root/dev on /my_zone/dev read/write/setuid/devices/
zonedevfs/dev=4e0000e
/my_zone/root/proc on proc read/write/setuid/nodevices/zone=
identity/dev=4bc000f
/my_zone/root/system/contract on ctfs read/write/setuid/nodevices/
zone=identity/dev=4b8000f
/my_zone/root/etc/svc/volatile on swap read/write/setuid/nodevices/
xattr/zone=identity/dev=4c4002b
/my_zone/root/etc/mnttab on mnttab read/write/setuid/nodevices/
zone=identity/dev=4c0000f
/my_zone/root/dev/fd on fd read/write/setuid/nodevices/zone=
identity/dev=4e4000f
/my_zone/root/tmp on swap read/write/setuid/nodevices/xattr/
zone=identity/dev=4c4002c
/my_zone/root/var/run on swap read/write/setuid/nodevices/
xattr/zone=identity/dev=4c4002d
/my_zone/root/my_ufs on /dev/md/dsk/d35 read/write/setuid/
devices/intr/largefiles/logging/xattr/onerror=panic/dev=1540048
/my_zone/root/my_zfs on my_zpool/my_zfs read/write/setuid/devices
/exec/xattr/atime/dev=401000b
/my_zone/root/my_lofs on /my_lofs read/write/setuid/devices/
dev=1540000

We can dismount the non-global zone's file systems without reboot as well:

umount /my_zone/root/my_ufs
umount /my_zone/root/my_zfs
umount /my_zone/root/my_lofs

Remember that an LOFS can refer to almost any directory in the global zone, which can be shared by many zones concurrently. This means that if we have an

LOFS mounted in a non-global zone and we mount a new file system into the primitive directory in the global zone, the new file system will be accessible in every

zone in the respective LOFS mount point.

A special case is the /cdrom directory. For example, we can mount it as an LOFS in read-only mode in a non-global zone:

mkdir /my_zone/root/cdrom
mount -F lofs -o ro /cdrom /my_zone/root/cdrom

Then we insert media into the DVD unit and it's mounted into /cdrom/cdrom0 by the vold daemon in the global zone. The media's content will be available online in

my_zone as it is in the global zone.

It might be useful, furthermore, to mount file systems into a non-global zone in order to overwrite some native mount points. Let's suppose we need the zone's /tmp

directory outside the swap space to preserve temporary files after reboot. In such a case, we could dismount the original zone's tmpfs type file system, as long as

nobody is using it and we realize that its content will be lost. Then, we could mount a long-term file system on /my_zone/root/tmp anytime:

umount /my_zone/root/tmp
cp /my_zone/root/etc/vfstab /my_zone/root/etc/vfstab.ori
sed '/tmpfs/s/swap/#swap/' /my_zone/root/etc/vfstab.ori > \
/my_zone/root/etc/vfstab
cat > tmpconfig.txt << EOF
add fs
set dir=/tmp
set special=/dev/md/dsk/d36
set raw=/dev/md/rdsk/d36
set type=ufs
end
EOF
zonecfg -z my_zone -f tmpconfig.txt
mount -F ufs /dev/md/dsk/d36 /identity/root/tmp
chmod 1777 /my_zone/root/tmp

To revert the recent action without reboot, we have to do the following:

umount /my_zone/root/tmp
mv /my_zone/root/etc/vfstab.ori /my_zone/root/etc/vfstab
zonecfg -z my_zone remove fs dir=/tmp
mount -F tmpfs swap /identity/root/tmp

However, if we want the zone's /var directory to be in a separate file system than the / one, then it must be mounted on /my_zone/root/var prior to installing the

zone (included with the initial zone's configuration). Optionally, if the zone is already installed, we could halt it, then move the zone's /var directory content to a new

file system, and finally add the new file system to the zone on its /var mount point before booting the zone again. It's not possible to do such migration without

rebooting the non-global zone.

At this point, it's important to decide on the zone's autoboot parameter, because every file system on the entire server must be available before the zone boots.

Zones always boot after the svc:/system/zones service is initiated. Sometimes, file systems are mounted later in the global zone because they depend on other

resources, and some of them might have to be mounted as LOFS in a non-global zone. In such situations, we can set the zone's autoboot parameter to the value

false and boot the zone through a legacy run-control script so that we can start a zone under certain conditions, such as testing a file, for instance,

/mounted_path/flag_file:

cat >> /etc/rc3.d/S99zones << EOF
[-f /mounted_path/flag_file] && zoneadm -z my_zone boot
EOF
chmod 744 /etc/rc3.d/S99zones
chown root:sys /etc/rc3.d/S99zones
echo 'zoneadm -z my_zone halt' >> /etc/rc0.d/K01zones
chmod 744 /etc/rc0.d/K01zones
chown root:sys /etc/rc0.d/K01zones

Raw Devices

To add the raw device /dev/md/rdsk/d321 to a non-global zone called my_zone, we do the following:

zonecfg -z my_zone
zonecfg:my_zone> add device
zonecfg:my_zone:device> set match=/dev/md/rdsk/d321
zonecfg:my_zone:device> end
zonecfg:my_zone> commit
zonecfg:my_zone> exit
#

After that, to make the changes effective, we need to reboot the zone:

zoneadm -z my_zone reboot

Now, if we want to add the new raw device /dev/md/rdsk/d322 to the same zone, we must repeat the procedure and reboot the zone again. To avoid doing that,

the solution is to use some regular expressions with matching devices at the beginning. It's like configuring tape devices:

cat > tapeconfig.txt << EOF
add device
set match=/dev/rmt/1*
end
EOF
zonecfg -z my_zone -f tapeconfig.txt

/dev/rmt/1 /dev/rmt/1n /dev/rmt/1bc

zlogin -l root my_zone ls /dev/rmt
1 1bn 1cb 1cn 1hb 1hn 1lb 1ln 1mb 1mn 1u 1ubn
1b 1c 1cbn 1h 1hbn 1l 1lbn 1m 1mbn 1n 1ub 1un

BigAdmin Submitted Article: Assigning System Resources to Solaris 10... http://www.sun.com/bigadmin/content/submitted/assign_resources.jsp

3 sur 4 25.05.2008 11:28

This configuration implies the matching of every device's composition from /dev/rmt/1, such as /dev/rmt/1n, /dev/rmt/1bc, and so on:

zlogin -l root my_zone ls /dev/rmt
1 1bn 1cb 1cn 1hb 1hn 1lb 1ln 1mb 1mn 1u 1ubn
1b 1c 1cbn 1h 1hbn 1l 1lbn 1m 1mbn 1n 1ub 1un

Taking advantage of this feature, we can assign tens or even hundreds of raw devices with just one matching line:

cat > rawconfig.txt << EOF
add device
set match=/dev/md/rdsk/d3*
end
EOF
zonecfg -z my_zone -f rawconfig.txt

However, we might need to match raw devices consecutively from d301 to d320 only. At this time, it's risky to match any other devices, such as d3 or d35, because

they could be used in another zone, especially the global zone, since a privileged user in my_zone could write on those devices by mistake.

ls /my_zone/root/dev/md/rdsk
d3 d302 d304 d306 d308 d310 d312 d314 d316 d318 d320
d301 d303 d305 d307 d309 d311 d313 d315 d317 d319

Another wrong solution would be to match all the disk slices with the expression /dev/rdsk/c0t2d0s*, since c0t2d0s2 represents the entire disk. In fact, it's highly

improbable that someone will write on forbidden devices, but a smart administrator wouldn't present the main devices to a non-global zone.

To prevent such situations, we can assign raw devices to a non-global zone, as follows:

cat > rawconfig.txt << EOF
add device
set match=/dev/md/rdsk/d3??
end
EOF
zonecfg -z my_zone -f rawconfig.txt

This brings every raw device between d300 and d399 into the zone, but doesn't match d3 or d35, as intended. A sufficient solution is to assign different groups of soft

partitions by the hundreds to each zone, in order to rule out overlapping.

The second and more interesting advantage is that we can create new soft partitions in the matching range from the global zone, and they will be online in the

non-global zone without reboot. For instance, assume there is a zone that has 20 raw devices from d301 to d320 matching /dev/md/rdsk/d3??:

ls /my_zone/root/dev/md/rdsk
d301 d303 d305 d307 d309 d311 d313 d315 d317 d319
d302 d304 d306 d308 d310 d312 d314 d316 d318 d320

Now we create a new soft partition in the matching range and it appears immediately in the non-global zone:

metainit d321 -p /dev/rdsk/c0t2d0s0 5g
ls /my_zone/root/dev/md/rdsk
d301 d303 d305 d307 d309 d311 d313 d315 d317 d319 d321
d302 d304 d306 d308 d310 d312 d314 d316 d318 d320

Suppose now that we concatenate two disk slices as d300 and then we create a new soft partition d322 in it, although this is not recommended, as inferred above.

metainit d300 2 1 /dev/rdsk/c0t2d0s6 1 /dev/rdsk/c1t2d0s6
metainit d322 -p d300 5g
ls /my_zone/root/dev/md/rdsk
d300 d302 d304 d306 d308 d310 d312 d314 d316 d318 d320 d322
d301 d303 d305 d307 d309 d311 d313 d315 d317 d319 d321

Device d300 is now available in the non-global zone. We should hinder the zone's users from accessing it.

The /dev directory in a non-global zone is an LOFS referenced to /my_zone/dev mounted at boot with a special option called zonedevfs. The Solaris 10 OS

generates one special file in the /my_zone/dev directory for each matching device:

file /my_zone/dev/md/rdsk/d300
/my_zone/dev/md/rdsk/d300: character special (85/300)
ls -l /my_zone/dev/md/rdsk | head -6
total 0
crw-r----- 1 root sys 85, 300 Mar 4 10:39 d300
crw-r----- 1 root sys 85, 301 Mar 4 10:13 d301
crw-r----- 1 root sys 85, 302 Mar 4 10:13 d302
crw-r----- 1 root sys 85, 303 Mar 4 10:13 d303
crw-r----- 1 root sys 85, 304 Mar 4 10:13 d304

These are not symbolic links pointing to files located in the global zone's /device directory, but they are proper files that can be managed separately. The privileged

users in the non-global zone can change permissions on these files inside the /dev directory, but they cannot delete them. However, we can remove the zone's

devices from the global zone:

rm /my_zone/dev/md/rdsk/d300

Though we can clear away some online zones' devices this way, they will be there again after the next reboot. The least bad, most permanent solution is to create

empty files replacing the original ones:

touch /my_zone/dev/md/rdsk/d300
zlogin -l root my_zone "file /dev/md/rdsk/d300"
/dev/md/rdsk/d300: empty file
zlogin -l root my_zone "ls -l /dev/md/rdsk" | head -6
total 0
-rw-r--r-- 1 root root 0 Mar 4 12:05 d300
crw-r----- 1 root sys 85, 301 Mar 4 10:13 d301
crw-r----- 1 root sys 85, 302 Mar 4 10:13 d302
crw-r----- 1 root sys 85, 303 Mar 4 10:13 d303
crw-r----- 1 root sys 85, 304 Mar 4 10:13 d304

The new empty files can't be modified by the non-global zone's users. After reboot, these files will remain there.

On the other hand, when we don't need a raw device anymore in the zones, we should delete it everywhere:

metaclear d322
rm /my_zone/dev/md/rdsk/d322
metaclear d300
rm /my_zone/dev/md/rdsk/d300

The zone's configuration doesn't change and it's not necessary for the zone to reboot.

Finally, to accomplish all the practices suggested above, the general zone's configuration should look as follows:

zonecfg -z my_zone info
zonepath: /my_zone
autoboot: true
pool:
fs:
 dir: /my_ufs
 special: /dev/md/dsk/d35
 raw: /dev/md/rdsk/d35
 type: ufs
 options: []
fs:
 dir: /my_zfs
 special: my_zpool/my_zfs
 raw not specified
 type: zfs
 options: []
fs:
 dir: /my_lofs
 special: /my_lofs
 raw not specified
 type: lofs
 options: []
fs:
 dir: /cdrom

BigAdmin Submitted Article: Assigning System Resources to Solaris 10... http://www.sun.com/bigadmin/content/submitted/assign_resources.jsp

4 sur 4 25.05.2008 11:28

fs:
 dir: /my_lofs
 special: /my_lofs
 raw not specified
 type: lofs
 options: []
fs:
 dir: /cdrom
 special: /cdrom
 raw not specified
 type: lofs
 options: [ro]
net:
 address: 192.168.0.35/24
 physical: bge0
device
 match: /dev/rmt/1*
device
 match: /dev/md/rdsk/d3??
#

