L earning C/C++ Step-By-Step

By Ganesh Kumar Butcha
Published: 2009-01-07 18:03

L earning C/C++ Step-By-Step 01. Step-by-Step C/C++ --- Introduction

Many people are really interested in learning and implementing C/C++ programs on their favorite platforms like DOS/Windows or Linux. If you are the
one looking for a step-by-step guide to get started, thistutorial isfor you. Let me know your commentson my tiny attempt to serve the community.

Contents

|. About C
-WhatisC?
- Development of C language
- C asagenera purpose Language
- History of C
- Featuresof C

I1. Programming Basics

- Components of a program
- Constants

- Datatypes

- Numeric Data Type

- Non-Numeric Data Type
- Integer Data Type

- Real Data Type

- Logical Data Type

- Enumerated Data Type

Introduction to Language & ExpressionswWhat is C?

C isacompiler based programming language supports both high level and low level statements to interact directly with the hardware.

Copyright © 2009 All Rights Reserved. HowtoForge Page 1 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Development of C Language

The C programming language evolved from a succession of programming languages developed at Bell Laboratoriesin early 1970s. It was not until the late
1970s that this programming language began to gain widespread popularity and support. This was because until that time C compilers were not readily
available for commercial use outside of Bell Laboratories.

The C language was the outcome of Dennis Ritchie(TM)swork on a project in Bell Laboratories, to invent a suitable high level language for writing an
Operating System which manages the input and output devices of a computer, allocates its storage and schedules the running of other programs.

UNIX operating system iswritten in the C language. Hence the Unix Operating system has C asits standard programming language. In fact over 90% of
the operating system itself iswritten in the C language. So originally C language was designed and implemented on the Unix Operating System.

C asageneral purpose Language

Cisahigh level, procedural/structured, and general purpose programming language and resembles few other high level languages such as Fortran, Pascal,
and PL/1. However, we cannot call the C language as a asPurely High Level Languages.

C stands somewhere between the high-level languages meant for carrying on special activities and the low level languages such as assembly language of a
machine because of some features like ceSystem Independences, od_imited Data Typee, oeHigh Flexibilitye, it is considered as a powerful language C has
also become popular because of its portability across systems.

History of C
Year Language Developedby Remarks
1960 ALGOL Internationa Committee Too general, Too abstract
1963 CPL Cambridge University Hard to learn, Difficult to implement
1967 BCPL Martin Richards Could dea with only specific problems
1970 B Ken Thompson AT & TBell Labs Could deal with only specific problems
1972 C Dennis RitchieAT & TBell Labs Lost generality of BCPL and B restored
Early 80(TM)s C++ Bjarne Stroustrup AT & T Introduces OOPsto C.

Featuresof C

- Simple, versatile, general purpose language

Copyright © 2009 All Rights Reserved. HowtoForge Page 2 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

- Programs are fast and efficient

- Hasgot rich set of operators

- more general and has no restrictions

- can easily manipulates with bits, bytes and addresses

- Varieties of datatypes are available

- separate compilation of functionsis possible and such functions can be called by any C program

- block-structured language

- Can be applied in System programming areas like operating systems, compilers & Interpreters, Assemblers etc.,

I1. Programming BasicsComponents of a program

Constants
Variables
Operators
Statements

El N

So, before writing serious programming we must be clear with all the above components of programs. According to above example every program is a set
of statements, and statement is an instruction to the computer, which is a collection of constants, variables, operators and statements.

Constants

A constant is afixed value, which never atered during the execution of a program.
Constants can be divided into two major categories:

1. Primary Constants
2. Secondary Constants

Data Types
The kind of data that the used variables can hold in a programming language is known as the data type.

Basic datatypes are as follows:

Copyright © 2009 All Rights Reserved. HowtoForge Page 3 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Numeric Data Type
Non-Numeric Data Type
Integer Data Type

Real Data Type

Logical Data Type
Enumerated Data Type

SurwWNE

1. Numeric Data Type: Totally deals with the numbers. These numbers can be of integer (int) datatype or real (float) data type.

2. Non-Numeric Data Type: Totally deals with characters. Any character or group of characters enclosed within quotes will be considered as
non-numeric or character data type.

3. Integer Data Type: Deaswithintegers or whole numbers. All arithmetic operations can be achieved through this data type and the results are again
integers.

4. Real Data Type: dealswith rea numbers or the numeric data, which includes fractions. All arithmetic operations can be achieved through this data
type and the results can be real datatype.

5. Logical or Boolean Data Type: can hold only either of the two values TRUE or FALSE at atime. In computer, a1 (one) is stored for TRUE and a
0 (zero) is stored for FALSE.

6. Enumerated Data Type: Includes the unstructured data grouped together to lead to a new type. This datatype is not standard and us usually defined
by user.
Ex.
Week_days = { aesune, oamone, cues, cavede, odhue, odrie, oesate } ;
Directions = {*Northe, oEaste, cd/Neste, asSouthe } ;

The following table shows the standard data types with their properties.

Keyword

Range: low

Copyright © 2009 All Rights Reserved. HowtoForge Page 4 of 276

Learning C/C++ Step-By-Step

Range: high
Digitsof precision
Bytes of memory

Format-1D

vhar
-128
127
n/a
1

%%C

int
-32, 768
32, 767

N/a

2 (on 16 bit processor)

Copyright © 2009 All Rights Reserved.

http://mww.howtofor ge.com/

Page 5 of 276

Learning C/C++ Step-By-Step

%d

long

-2,147, 483, 648
2, 147,483,647
N/a

4

%ld

float

3.4x 10-38
3.4x 1038
5

4

%of

double

1.7x 10-308

Copyright © 2009 All Rights Reserved.

http://mww.howtofor ge.com/

Page 6 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

1.7x 10308
15
8

%ol f

long double

34x 10-4932

34x 10-4932

19

10

%L f

NOTE: Therequired rangesfor signed and unsigned intare identical to those for signed and unsigned short. Oncompilers for 8 and 16 bit processors
(including Intel x86processors executing in 16 bit mode, such as under MS-DOS), anint is usually 16 bits and has exactly the same representation asa short.
On compilersfor 32 bit and larger processors (includingintel x86 processors executing in 32 bit mode, such as Win32 orLinux) an int is usually 32 bitslong
and has exactly the samerepresentation as along.

| want you to refer this page for more information on int type for different processors:

Ref: http://mww.jk-technol ogy.com/c/inttypes.html

02. Step-by-Step C/C++ --- IDE and Compilersfor C/C++

C/ C++ isacompiler based programming languages. In order to run a program you need a compiler software (i.e., GNU GCC, Tiny C, MS Visual C++,

Copyright © 2009 All Rights Reserved. HowtoForge Page 7 of 276

http://www.jk-technology.com/c/inttypes.html

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Cygwin C, Borland, Intel C etc..). Also you need an IDE to create/edit programs (eg: Dev-C++, Code::Blocks, Eclipse, TurboC, etc..)
| am giving you a couple of examples of my favorite compiler and IDES, Y ou may choose the best from the vast list.

1. Installing GNU GCC Compiler

1.1. For Linux

1.2. For Mac OS X

1.3. For Windows (MinGW + DevCpp-IDE)

1.4. How to Create, Compile and Execute Programs

1.5. Example Programs

1. Installing GNU GCC Compilerl.1. For Linux
- For Redhat, get agcc-c++ RPM, e.g. using Rpmfind and then install (as root) using

rpm-ivh gcc-c++-version-rel ease. arch.rpm

- For Fedora Core/ CentOS, install the GCC C++ compiler (as root) by using

yuminstall gcc-c++

- For Mandrake, install the GCC C++ compiler (asroot) by using

Copyright © 2009 All Rights Reserved. HowtoForge Page 8 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

urpm gcc-c++
- For Debian, install the GCC C++ compiler (asroot) by using
apt-get install g++
- For Ubuntu, install the GCC C++ compiler by using
sudo apt-get install g++

- If you cannot become root, get the tarball from ftp://ftp.gnu.org/ and follow the instructionsin it to compile and install in your home directory.

1.2. For Mac OS X
Xcode has GCC C++ compiler bundled.
1.3. For Windows (MinGW + DevCpp-I DE)

- Go to http://www.bloodshed.net/devcpp.html, choose the version you want (eventually scrolling down), click on the appropriate download link! For the
most current version, you will be redirected to http://www.bloodshed.net/dev/devcpp.html

- Scroll down to read the license and then to the download links. Download a version with Mingw/GCC. It's much easier than to do this assembling
yourself. With avery short delay (only some days) you will always get the most current version of mingw packaged with the devcpp IDE. It's absolutely the
same as with manual download of the required modules.

- You get an executable that can be executed at user level under any WIinNT version. If you want it to be setup for all users, however, you need admin
rights. It will install devcpp and mingw in folders of your wish.

- Start the IDE and experience your first project!

Y ou will find something mostly similar to MSV C, including menu and button placement. Of course, many things are somewhat different if you were
familiar with the former, but it's as simple as a handfull of clicksto let your first program run.

1.4. How to Create, Compile and Execute Programs

If you are using Linux, create/edit a program:

Copyright © 2009 All Rights Reserved. HowtoForge Page 9 of 276

ftp://ftp.gnu.org/
http://www.bloodshed.net/devcpp.html
http://www.bloodshed.net/dev/devcpp.html

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

vi hello.cpp

Compilation:

g++ -Wall -g -o hello.out hello.cpp

Running a program:

./ hell 0. out

1.5. Example Programs: C Example Program:

* 0001 _hello.c *\
#i ncl ude <stdi o. h>

int main()

printf("\nHello world");

return O;

C++ Example Program:

Copyright © 2009 All Rights Reserved. HowtoForge Page 10 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

* 0001_hello.cpp *\
#i ncl ude <i ostrean
usi hg namespace std;

int main()

cout << endl << "Hello, Happy programm ng";

return O;

03. Step-by-Step C/C++ --- C Programming - Basic | O StatementsContents

- Structure of a C program

- 1/0 Statements

- Printf

- Escape Characters

- Using Variables in programs
- Scanf

- More |O Statements
- gets

- puts

- getch

- putch

- getche

- getchar

Copyright © 2009 All Rights Reserved. HowtoForge Page 11 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

As discussed, every program is a set of statements, and statement is an instruction to the computer, which is a collection of constants, variables, operators
and statements.

Structure of a C program

<return type> main(arg-list)

<decl arati on part>

<St at ement bl ock>

<Ret urn Val ues >

We are going to start with Input / Output Statements as they play important rolesin our further programs.

/O Statements

Printf
This statement displays the given literal / prompt / identifiers on the screen with the given format.

Syntax:

Copyright © 2009 All Rights Reserved. HowtoForge Page 12 of 276

Learning C/C++ Step-By-Step

printf(<"pronpt/literal/format id/esc char. "> idl,id2
E.g.
printf("Hello");
printf("Student nunber . %", sno);
printf("Student nane . %", nanme);
printf("3Subjects Marks %, %, %", nil, n2, nB);

1. Program to print a message:
/* 02_print.c */
#i ncl ude <stdi o. h>

int main()

printf("Hello");

return O;

Escape Characters

Common Escape Sequences

Escape Sequence

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 13 of 276

Learning C/C++ Step-By-Step

Character

a

Bell(beep)

Backspace

Form feed

n

New line

Return

Tab

Copyright © 2009 All Rights Reserved.

http://mww.howtofor ge.com/

Page 14 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

\

Backslash

(TM)

Single quotation mark

Double quotation marks

xdd
Hexadecimal representation

2. Program to print amessage in anew line
- Compare with the last program.

/* 03_esc.c */
#i ncl ude <stdi o. h>

int main()

printf("\nHello");

return O;

Copyright © 2009 All Rights Reserved. HowtoForge Page 15 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

3. Program to display address of a person
- Multiple statementsin main

/* 04_multi.c */
#i ncl ude <stdi o. h>

int main()

printf("\nName of the Person");
printf("\nStreet, Apartnent//House No. ");
printf("\nzip, Cty");
printf("\nCountry");

return O;

Using Variablesin programs

Basic Variable Types

Copyright © 2009 All Rights Reserved. HowtoForge Page 16 of 276

Learning C/C++ Step-By-Step
Keyword

Range: low
Range: high
Digits of precision
Bytes of memory

Format-1D

Char
-128
127
n/a
1

%cC

Int
-32, 768
32, 767

N/a

Copyright © 2009 All Rights Reserved.

http://mww.howtofor ge.com/

Page 17 of 276

Learning C/C++ Step-By-Step

2

%d

Long

-2,147, 483, 648
2, 147,483,647
N/a

4

%ld

Float

34x 10-38
3.4x 1038
5

4

%of

Double

Copyright © 2009 All Rights Reserved.

http://mww.howtofor ge.com/

Page 18 of 276

Learning C/C++ Step-By-Step

1.7x 10-308
1.7x 10308
15

8

%ol f

long double
3.4x 10-4932
3.4x 10-4932
19

10

%L f

4. Program to find the sum of two values
- Variables are introduced in this program

/* 05_var.c */
#i ncl ude <stdio. h>

int main()

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 19 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

5. Program to find the sum of two values with message

- Compare with the last program

Copyright © 2009 All Rights Reserved. HowtoForge Page 20 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\nSumis %", c);
/* We have inserted extra text before printing the val ue*/

return O;

Scanf
Using this statement we can accept and values to variables during the execution of the program.
Syntax:
scanf(<format id/esc char">, idl,id2,)
Eg.
scanf ("%", &sno);
scanf ("%", nane);
scanf ("%%%d", &, &n2, &nB);
6. Program to find the sum of two value using scanf

- When you run the program it shows you the cursor and waits for your input, enter a numeric value and press "Return”, do this twice and you will get
the output.

/* 07_scanf.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 21 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()

int a, b, c; scanf ("%", &a);
scanf (" %", &b);

c =a+b;

printf("\nSumis %", c);

return O;

More Excercises:
7. Program to find the sum of two values with message display

- Messages are optional but introduces user-friendly interaction
- Compare with the last program

/* 08_sumc */
#i ncl ude <stdio. h>

int main()

int a, b, c; printf("Enter A value "); scanf("%l", &a);

Copyright © 2009 All Rights Reserved. HowtoForge Page 22 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("Enter B value "); scanf("%l", &b);
c =a+ b;
printf("\nSumis %", c);

return O;

8. Program to find the result of (a+ b)2
- Similar to sum of two values program but the formulae is different

/* 09 _formula.c */
#i ncl ude <stdi o. h>

int main()

int a, b, c;
printf("Enter A value "); scanf("%l", &a);
printf("Enter B value "); scanf("%l", &b);

c=a*a+b*b+2*a*hb;

Copyright © 2009 All Rights Reserved. HowtoForge Page 23 of 276

Learning C/C++ Step-By-Step

printf("Result is %", c);

return O;

. Program to find the annual salary of an employee

- input : eno, name, sal

- Process: Asal =sa * 12

- Output : Eno, name, sal, asal

- This program introduces the different types of variable

/* 10_enp.c */

#i ncl ude <stdio. h>

int main()

{
int eno;
char nange[10] ; /* nanme with 10 characters width */
float sal, asal; /* sal & asal as real values */

printf("Enter Enployee nunber "); scanf("%", &eno);

printf("Enter Enpl oyee nane "); scanf("%", nane);
printf("Enter Enployee sal ary "); scanf("%", &sal);
Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 24 of 276

10.

Learning C/C++ Step-By-Step

asal = sal * 12;

printf("\nEnpl oyee nunber %", eno);
printf("\nEnpl oyee nane %", nane);
printf("\nEnpl oyee sal ary %", sal);
printf("\nAnnual Salary %", asal);
return O;

Write a program to find the total and average marks of a student
Input : Sno, name, subl, sub2, sub3
process : total = subl + sub2 + sub3; avg=total /3
output : sno, name, total, avg
Similar to the above program just accept, process, and print the values

/* 11 _stud.c */
#i ncl ude <stdio. h>

int main()

int sno, subl, sub2, sub3, total;

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 25 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

char nange[10] ;

float avg;

clrscr(); /* clear the screen before its output */
printf("Enter Student nunber "); scanf("%l", &sno);
printf("Enter Student nane "); scanf("%", nane);

printf("Enter Subjectl marks "); scanf("%l", &subl);
printf("Enter Subject2 marks "); scanf("%l", &sub2);
printf("Enter Subject3 marks "); scanf("%l", &sub3);

total = subl + sub2 + sub3;

avtg = total / 3;

printf("\nStudent nunber %", sno);

printf("\nStudent nanme %", nane);

printf("\nTotal marks %", total);

Copyright © 2009 All Rights Reserved. HowtoForge Page 26 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\nAverage nmarks %" , avg);

return O;

More | O Statements

Cet s:
To accept astring from the key board. It accepts string value up to the carriage return.

Syntax:

gets(<id.>);
E.g.

get s(nane) ;
gets(street);

put s

It displays the given string value on the screen.

Syntax:

puts(<id.> / <opronptes>);

Copyright © 2009 All Rights Reserved. HowtoForge Page 27 of 276

Learning C/C++ Step-By-Step

E.g.

put s(nane) ;
puts(street);

get ch - Read char without echo
get che - read char with echo

get char - read char and accept carriage return

put ch
It can print a character on the screen.
Syntax:
put ch(<char>).
E.Q.

putch("a(T™);
put ch(65);

get ch

It accepts a character from console.

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 28 of 276

Learning C/C++ Step-By-Step
Syntax:
char = getch().
E.Q.

ch = getch();
option = getch();

04. Step-by-Step C/C++ --- C Programming - Conditional Statements
- Introduction to Conditional Statements:

-if..else

- switch

1. Introduction to Conditional Statements:

A computer is an electronic device which can perform arithmetic operations as well logical decisions.

At this point, computer is far away from an ordinary calculator which able to perform only arithmetic operations.

We can ask the biggest value from the given two values using conditional statements like if-else, switch.

2.if..else

It isaconditional statement to find the variance between two expressions.

Syntax:

if (<condition>)

{ <St. bl ock>; }

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mww.howtofor ge.conv

Page 29 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

el se
{ <St block>; 1}
Every if has a condition and two statement blocks. If the condition istrue it executes the first st.block and vice versa.
Eg.
I1f(a>b)
printf(a€od i s biga€e);
el se

printf(a€aB i s bi ga€-);

Note: No need of block for Single statements.
1. Program to find the biggest of 2 values
/* 12_if.c */

#i ncl ude <stdi o. h>

int main()
{ /* Begin */
int a, b; /* Declaration of Variables */

Copyright © 2009 All Rights Reserved. HowtoForge Page 30 of 276

Learning C/C++ Step-By-Step

printf("\nEnter A value : "); scanf("%",

printf("\nEnter B value : "); scanf("%",

if(a>b) /* Conpare both */
printf("Ais big");

el se

printf("Bis big"); /* Print the result */

return O;

} /* End */

Thisisalist of operatorsin the C++ and C programming languages. All the operators listed exist in C++

/* Read val ue A */

/*

Read value B */

Ref: http://en.wikipedia.org/wiki/Operators in C and C++

Arithmetic Operators

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder after integer division (modulus)

Unary Operators
Operator Purpose

- Minus (negative number)
++ Increment (increase by 1)

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mmw.howtofor ge.conv

Page 31 of 276

http://en.wikipedia.org/wiki/Operator_%28programming%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Learning C/C++ Step-By-Step

-- Decrement (decrease by 1)
sizeof Size, in bytes
(type) Cast

Relational Operators
Operator Purpose
<LessThan
<=LessThan Or Equa To
> Greater Than
>= Greater Than Or Equal To

Equality Operators
Operator Purpose
==Equa To
I=Not Equal To

Logical Operators
Operator Purpose
&& AND
|| OR
I NOT

Bit-Manipulating Operators

Operator Purpose
& AND

| OR

~NOT

AN XOR

<< Shift Left

>> Shift Right

Operator Precedence Groups
Operator Category Operators Associativity

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 32 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

unary operators- ++ -- | sizeof (type) RtoL
arithmetic multiply, divide and remainder * / %L toR
arithmetic add and subtract + - L toR

relational operators< <= > >=L toR

equality operators== =L toR

logical operators&& ||L toR

conditional operators? : Rto L

assignment operators= += -= *= /= %=RtolL

More Excercises
The reason behind more exercisesis to get acquainted with the learned statements, if you are confident you don(TM)t have to run the following programs.
/* 01. Program to find the age of a person from the following details */
[* age<=12 Child Age
age>=13andage<=19 Teen Age
age >= 20 and age <= 35 Young Age
age >= 36 and age < 50 Middle Age
age>=50 Old Age
*/
/* 13_age.c */

#i ncl ude <stdi o. h>

int main()

char name[20] ;

int age;

Copyright © 2009 All Rights Reserved. HowtoForge Page 33 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

clrscr();

print "Enter Ur name "; input nane;

print "Enter Ur age "; input age;

printf("\n% U are in ");

if (age <= 12) printf("Child Age");

if (age >= 13 and age <= 19) printf("Teen Age");
if (age >= 20 and age <= 35) printf("Young Age");
if (age >= 36 and age < 50) printf("Mddle Age");
if (age >= 50) printf("Od Age");

return O;

[* 02. Program to find the biggest of 3 Values */
/* 14 _big3.c */
#i ncl ude <stdio. h>
#i ncl ude <coni o. h>

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 34 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

{
int a, b, c;
clrscr();
printf("Enter A value "); scanf("%", &a);
printf("Enter B val ue "); scanf("%l", &b);
printf("Enter C val ue "); scanf("%", &c);
if(a>b&a>c) printf("Ais big");
if(b>a&b>c) printf("Bis big");
if(c>a&c>b) printf("Cis big");
return O;

}

/* 03. Program to find the biggest of 3 Values using if..else */
/* 15 _big3.c */
#i ncl ude <stdio. h>
#i ncl ude <coni o. h>

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 35 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

[* 04. Program to find the biggest of 3 Values using nested if */

Copyright © 2009 All Rights Reserved. HowtoForge Page 36 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 37 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* 05. To find the week day of the given number */

Copyright © 2009 All Rights Reserved. HowtoForge Page 38 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

if (wek == 5) printf ("Thursday");

if (week ==) printf ("Friday");

if (week == 7) printf ("Saturday");

if (week <1 || week > 7) printf("Bad Day");

return O;

3. Switch

A multi-conditional st. has the ability to check the variance of more than one expression.

Syntax:

swi t ch(<i d>)

case <expr.> : <st. block>; break;

case <expr.> : <st. block>; break;

Default : <st. bl ock>;

Copyright © 2009 All Rights Reserved. HowtoForge Page 39 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* 06. To find the week day of the given number using switch statement */

Copyright © 2009 All Rights Reserved. HowtoForge Page 40 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 41 of 276

Learning C/C++ Step-By-Step

05. Step-by-Step C/C++ --- C Programming - Looping Statements
- Branching Statement - goto

- Looping Statements

for

while

do..while

1. Branching Statement

goto
It transfers the control pointer from one place to another in the current program.

Syntax:

got o <l abel >;

Note: Label name must be defined with colon(:) and it should not exceed more than 32 characters in length.

Eg.

abc:
printf(a€ael | 0a€-);

got o abc;

/* 01. A demonstration program to illustrate goto statement */
/* 19 goto.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved. HowtoForge

http://mww.howtofor ge.com/

Page 42 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()

abc: [* Label nanme */

printf("\nHello");
goto abc; /* branching statement */

return O;

[* 07. Continuous execution will be stopped with a carry varaible and a conditional statement */
/* Find the difference between the last program and this, note all the differences in this program™*/

/* 20_goto.c */
#i ncl ude <stdi o. h>

int main()

int i =1,

abc:

Copyright © 2009 All Rights Reserved. HowtoForge Page 43 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\nHello");

if (i<=10) /* Take care of this statenent */

got o abc;

return O;

2. Looping Statements

f
Z\rn iterative statement to execute a statement block for a number of times.
Syntax:
for(<initialization> ; <condition> ; <step val ue>)
{
<st. bl ock>
}
Eg.

for(1=1;1<=10; |++)

Copyright © 2009 All Rights Reserved. HowtoForge Page 44 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Eg.

/* 08. To print amessage 5 times */

/* 09. To print amessage with it's count upto 5 times */

Copyright © 2009 All Rights Reserved. HowtoForge Page 45 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* 10. To print 1 to 10 natural numbers */

Copyright © 2009 All Rights Reserved. HowtoForge Page 46 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\n%", i); /* Eleninating nmessage */

return O;

/* 11. To print second multiplication table */
/* Note : Compare it, with the last program */

/* 24 _table.c */
#i ncl ude <stdio. h>

int main()

int i;
for(i =1; i <= 20; i++)
printf("\n% * 2 = %", i, i * 2);

return O;

[* 12. To print amultiplication table for the given number */

/* 25 tablen.c */

Copyright © 2009 All Rights Reserved. HowtoForge Page 47 of 276

Learning C/C++ Step-By-Step

#i ncl ude <stdi o. h>

#i ncl ude <coni o. h>

int main()
{
int i, t; /* a newvariable 't' */
clrscr();
printf("Wiich table to print :"); scanf("%wd", &t);
for(i =1; i <= 20; i++)
printf("\n% * % = %", i, t, i * t);
return O;
}

[* 13. To print amultiplication table for the given number */
/* Note : Compare it, with the last program */

/* 26_tablen.c */

#i ncl ude <stdi o. h>

int main()

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mmw.howtofor ge.conv

Page 48 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

[* 14. To print numbersin triangle form */

/* Note : Compareit, with the last program */

Copyright © 2009 All Rights Reserved. HowtoForge Page 49 of 276

Learning C/C++ Step-By-Step

{
for(j =1, j <=5 j++)
printf("%d",
printf("\n");
}
return O;

Few more examples of for loops:

/* Infinite Loop */
for (;7)

{
printf("nHello");
}* Print 1-5 numbers*/

for (i1=1; i<=5;)
{
printf("n%d", i++);
}
[* Explicit Loop break*/
for (i=1;;)
{
printf("n%d", i++);
if (i>5) break;
}inti=1;
for (;i<=5;)
{

Copyright © 2009 All Rights Reserved.

IDE

HowtoForge

http: //mmw.howtofor ge.conv

Page 50 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

printf("n%d", i++);
}

whi | e
An iterative statement to execute a statement block until the given condition is satisfied.

do.. while

This iterative statement executes statement block at the begin and then it checks the condition validity. If the condition istrue it executes the statement
block again and vice versa.

Syntax:

while(< condition >)

{
<st. bl ock>;
}
Syntax:
do

<st. bl ock>
} while(<condition>);

Eg.
The following example displays natural numbers from 1 to 10.

Copyright © 2009 All Rights Reserved. HowtoForge Page 51 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 52 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

i ++;
}whi | e(i <=10);

return O;

It checks the condition first and executes the block next , So you should have an initial value for the condition It executes the block first and checks
the condition next , You can determine the initial valuein the st.block. More Examples

[* 15. To print 1 to 5 numbers */
/* Note: It'sareference program */

/* 28 while.c */
#i ncl ude <stdi o. h>

int main()

i = 1; /* Initial value is 1 */

while(i<= 10)
/* True i is less than or equal to 10 at first */

Copyright © 2009 All Rights Reserved. HowtoForge Page 53 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

[* 16. To print 1 to 5 numbers */

Copyright © 2009 All Rights Reserved. HowtoForge Page 54 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

[* 17. Demonstration of while */
/* Note: If theinitial value is 100 what was the output?, Check it. */

Copyright © 2009 All Rights Reserved. HowtoForge Page 55 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* 18. Demonstration of do */
/* Note: If theinitial valueis 100 what was the output?, Check it. */

Copyright © 2009 All Rights Reserved. HowtoForge Page 56 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

}

06. Step-by-Step C/C++ --- C Programming - FunctionsFunctions
[. Introduction
[1. Function definition
[11. Types of functions
V. Built-in functions
1. Numeric functions
2. String functions
3. Character Test Functions
V. User-Defined functions
1. Simple Functions
2. Function with Arguments
3. Function with Returns
4. Function with Recursion
V1. Pointers and Functions
1. Parameter Passing by Reference
2. Cdll by value
3. Cdll by Reference
VII. Loca Vs Global
V1. Storage Class Specifiers
Automatic Storage Class
Register Storage Class
Static Storage Class
Externa Storage Class

|. Introduction

Hereis aprogram to print the address of a person twice, which iswritten in both methods using functions and without using functions. It will demonstrate
the advantage of functions.

Copyright © 2009 All Rights Reserved. HowtoForge Page 57 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 58 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

{
printf("\nName of the Person");
printf("\nStreet, Apartnment//House No. ");
printf("\nzip, Gty");
printf("\nCountry");

}

int main()

{
address();
address();
return O;

}

I1. Function Definition

A statement block, which has ability to accept values as arguments and return results to the calling program. So, A function is a self-contained block of
statements that perform a specific task.

Copyright © 2009 All Rights Reserved. HowtoForge Page 59 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

[11. Types of functions

- Built-in functions/ Library Functions/ Pre-Defined functions
- User defined functions

V. Library Functions
Library functions are designed by the manufacturer of the software, They were loaded in to the disk whenever the software is |oaded.
The following functions are the example of the library functions.

1. Numeric Functions

Function Syntax Eg. Result
Abs Abs(n) abs(-35) 35
ceil cel(n) ceil(45.232) 46
floor floor(n) floor(45.232) 45
fmod fmod(n,m) fmod(5,2) 1
cos cos(n) cos(60) 0.5

sn sn(n) sin(60) 0.866
tan tan(n) tan(60) 1.732
sgrt sgrt(n) sgrt(25) 5

pow pow(n,m) pow(2,3) 8

2. String Functions

Functions Syntax Eg.

strlen strlen(str) strlen(cegComputere)

strecpy strepy(target,source) strepy(res,ePasse)
strcat strcat(target,source) strcat(cemage,egice)
strcmp stremp(strl,str2) stremp(ceabce,cAbce)
strrev strrev(target,scr) fstrrev(res,sLIRILe)

Copyright © 2009 All Rights Reserved. HowtoForge Page 60 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

3. Character Test Functions
Function Description
isalnum isaletter or digit
isalpha isaletter
isdigit isadigit
iscntrl isan ordinary control character
isascii isavalid ASCII character
isower isalower character
isupper isaupper character
isspace isaspace character
isxdigit ishexadecimal character

There is a huge library of functions available, | have given you a tiny portion of it. For more Library Fuctions refer the Help Manual.

V. User-Defined Functions

The programs you have already seen perform divisions of labor. When you call gets, puts, or strcmp, you don(TM)t have to worry about how the innards of
these functions work.

These and about 400 other functions are already defined and compiled for you in the Turbo C library. To use them, you need only include the appropriate

header file in your program, celhe run-time library, in the library reference to make sure you understand how to call the functions, and what value (if any)
it returns,

But you(TM)II need to write your own functions. To do so, you need to break your code into discrete sections (functions) that each perform asingle,
understandable task for your functions, you can call them throughout your program in the same way that you call C library functions.

Steps to implement a function

1. Declaration

2. Function Call

Copyright © 2009 All Rights Reserved. HowtoForge Page 61 of 276

Learning C/C++ Step-By-Step

3. Definition

¢ Every function must be declared at the beginning of the program.

¢ Function definition contains the actual code of execution task.

¢ If afunction is defined at the beginning of the program, there is no need of function declaration.
An example function to demonstrate the implementation

/* 32_egfun.c */

#i ncl ude <stdio. h>

voi d address();

/* Decl aration */

int main()

{
address(); /* Function Call */

address(); /* Function Call */

return O;
}

void address() /* Definition */

{
printf("nName of the Person");

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mmw.howtofor ge.conv

Page 62 of 276

Learning C/C++ Step-By-Step

printf("nStreet, Apartment//House No. ");

printf("nzip, City");
printf("nCountry");
}

User defined functions can be divided in to 4 types based on how we are calling them.

1. Simple Functions
2. Function with Arguments
3. Function with Returns
4. Function with Recursion

1. Simple Functions

Performs a specific task only, no need of arguments as well as return values

Example of Simple Function

/* 33_line.c */

#i ncl ude <stdi o. h>
void line();

/* Declaration */

int main()

{
line(); /* Function call */
return O;

}

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 63 of 276

Learning C/C++ Step-By-Step

void ling() [* Definition */

{

inti;
for(i =1;i<80; i++)

putch("*(TM));

2. Function with Arguments

A function, which accepts arguments, is known as function with arguments.

Eg.

/* 34_argu.c */

void line(char ch, int n)

int main()

{
line("-", 50);
line("*", 8);
return O;

}

void line(char ch, int n)

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 64 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

3. Function with Return values
A function which can return values to the calling program is known as function with return values.

Eg.

Copyright © 2009 All Rights Reserved. HowtoForge Page 65 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

/* Function Call*/

printf(oods, res);
return O;

}
void abs(int n)

{
if(n<0)
n=n*-1;
return n;

}

4. Function with Recursion
If a statement within the body of afunction call the same function is called “recursion(TM) . Sometimes called “circular definition(TM), recursion is thus

the process of defining something in terms of itself.Examples of Recursive of functions
[* The following program demonstrates function call of itself */

int main()

printf(a€a nHel | 0a€-);
main(); /* A function, which can call it self */
return O;

}
Don(TM)t run this program, it is still an explanation thus program isnot valid logically.

Copyright © 2009 All Rights Reserved. HowtoForge Page 66 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

The same output can be reached using another function:

voi d disp();

int main()

disp();

return O;

voi d disp()

printf(&a€cd nHel | 0a€.) ;

disp();

The program must end at a certain point so the key of the recursion lies on soft interrupt, which can be defined using a conditional statement.
Check the following example:

/* 36_recursion.c */

Copyright © 2009 All Rights Reserved. HowtoForge Page 67 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Program to find the factorial of the given number:

Copyright © 2009 All Rights Reserved. HowtoForge Page 68 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

To find the factorial of a given number using recursion

Copyright © 2009 All Rights Reserved. HowtoForge Page 69 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 70 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

VI. Pointers and Functions
Parameter Passing by Reference
Call by value
Call by Reference

1. Parameter Passing by Reference
The pointer can be used in function declaration and this makes a complex function to be easily represented as well as accessed. The function definition
makes use of pointersin it, in two ways
- Call by value
- Call by reference

The call by reference mechanism is fast compared to call by value mechanism because in call by reference, the address is passed and the manipulation
with the addresses is faster than the ordinary variables. More ever, only one memory location is created for each of the actual parameter.

When a portion of the program, the actual arguments, calls a function and the values atered within the function will be returned to the calling portion of
the program in the altered form. Thisistermed as call by reference or call by address. The use of pointer as a function argument in this mechanism enables
the data objects to be altered globally ie within the function as well as within the calling portion of the program. When a pointer is passed to the function,
the address of the argument is passed to the functions and the contents of this address are accessed globally. The changes made to the formal parameters
(parameters used in function) affect the original value of the actual parameters (parameters used in function call in the calling program).

Eg.

/* 39 func.c */

void func_c(int *x);

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 71 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

{
int i = 100;

int *a;

printf("\nThe value is %", i);
func_c(a);
printf("\nThe value is %", i);

return O;

void func_c(int *x)

(*x) ++;

printf("\nThe value in function is % ", *Xx);

In the above program, these are totally three “printf(TM) statements, tow in the main() function and one in the function subprogram. Due the effect of first
printf statement the value of i is printed as 100. Later function call is made and inside function, the valueis atered in and is 1001 due to increment. The
altered value is again returned to main() and is printed as 1001.

Copyright © 2009 All Rights Reserved. HowtoForge Page 72 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Hence the output is:
The value is 100
Thevalue in function is 101
Thevalueis 101
More about Function Calls
Having had the first tryst with pointers let us now get back to what we had originally set out to learn - the two types of functions calls: call by value and
call by reference. Arguments can generally be passed to function in one of the two ways:
a. Sending the values of the arguments
b. Sending the addresses of the arguments
2. Call by Value
In the first method the “value(TM) of each of the actual argumentsin the calling function is copied into corresponding formal arguments of the called

function. With this method the changes made to the formal arguments in the called function have no effect on the values of actual argumentsin the calling
function. The following programming illustrated the Call by Value.

/* 40_cal | byval ue.c */
void swap(int x, int y)

int main()

int a =10, b = 20;
swap(a ,b);

printf("\na=9%, b=9% ", a b);

Copyright © 2009 All Rights Reserved. HowtoForge Page 73 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

void swap(int x, int y)

printf("\nx = %, y = %", X, y);

The output of the above program would be:
X=20y=10
A=10b=20
Note that value of a and b remain unchanged after exchanging the value of x and y.

3. Call by Reference

This time the addresses of actual argumentsin the calling function are copied into formal arguments of the called function. This means that using these
addresses we would have an access to the actual arguments and hence we would be able to manipul ate them. The following program illustrates this fact.

Copyright © 2009 All Rights Reserved. HowtoForge Page 74 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 75 of 276

Learning C/C++ Step-By-Step

The output of the above program would be:

http: //mww.howtofor ge.conv

A =20, b = 10Note that this program manages to exchange the values of a and b using their addresses stored in x and y. Usually in C programming we
make acall by value. |.e. in general you cannot alter the actual arguments. But if desired, it can aways be achieved through a call by reference.
Using call by Reference intelligently we can make a function, which can return more than one value at a time, which is not possible ordinarily. Thisis

shown in the program given below.

/* 42 _call byref.c */

voi d areaperi(int r, float *a, float *p)

int main()

int radius;

float area, perineter;

printf("\nEnter radius of a circle :");

areaperi (radi us, &area, &perineter);

printf("\nArea = % ", area);

printf("\nPerinmeter = %", perineter);

return O;

Copyright © 2009 All Rights Reserved.

, & adius);

HowtoForge

Page 76 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

voi d areaperi(int r, float *a, float *p)

*a=3.14 *r *r,

p=2 3.14 * r,

And hereisthe output:
Enter radius of acircle5
Are = 78.500000
Perimeter = 31.400000

Here, we are making amixed call, in the sense, we are passing the value of radius but, address of area and perimeter. And since we are passing the
addresses, any change that make in values stored at address contained in the variables a and p, would make the change effective in main. That is why when
the control returns from the function areaperi() we are able to output the values of area and perimeter.

Thus, we have been able to return two values from a called function, and hence, have overcome the limitation of the return statement, which can return

only one value from afunction at atime.

VII. Local Vs Global Variables

According to the Scope of Identifiers Variables are declared as of types.

/* 42 _globalid.c */

Copyright © 2009 All Rights Reserved. HowtoForge Page 77 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int i=4000;

/* d obal variabl e decl aration*/

int main()

{
int =10, b=20; /* Loca Variable*/
inti=100; /* Local Variable*/
printf(c%d %ode, a, b);
printf(cenLocal i : %de, i); /* Accessing Local variable*/
printf(cenGlobal i : %d o ::i); /* Accessing Global variable */
return O,

}

Note: Scope Resolution (::) Operator can be availablein C++ only.
VIII. Storage Class Specifiers

Until this point of view we are aready familiar with the declaration of variables. To fully define a variable one needs to mention not only its “type(TM) but
also its"Storage Class(TM).
According to this section variables are not only have a"data type(TM), they also have a“Storage Class(TM).

Storage Classes are of 4 Types
1. Automatic Storage Class

2. Register Storage Class

3. Static Storage Class

4. External Storage Class

1. Automatic Storage Class
Keyword auto
Storage Memory
Default Value Null
Scope Loca totheblock in which the variable defined
Life Until the execution of itsblock

Copyright © 2009 All Rights Reserved. HowtoForge Page 78 of 276

Learning C/C++ Step-By-Step

Eg:

/* 43_auto.c */

#i ncl ude <stdi o. h>

int main()

{
auto int i, j;
printf(a€c®d Y@da€-, i, u);
return O;

}

2. Register Storage Class
Keyword register
Storage CPU Registers
Default Value Null
Scope Loca totheblock in which the variable defined
Life Until the execution of itsblock

Eg:

/* 44 register.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 79 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()

register int i, j;
for(i=1;i<=10;i ++)
printf(a€cd n%da€s, i);

return O;

3. Static Storage Class
Keyword static
Storage Memory
Default Value Zero
Scope Local totheblock in - which the variable defined
Life Vaueof thevariable persistsbetween different function calls

Eg:

/* 45 _static.c */
#i ncl ude <stdio. h>
void add();

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 80 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

add() ;
add() ;
add() ;

return O;

voi d add()

static int i = 1;

printf(a€add\ na€., i ++);

4. External Storage Class
Keyword extern
Storage Memory
Default Value Zero
Scope Global
Life Aslongasthe program(TM)s execution doesn(TM)t come to an end

Eg:

Copyright © 2009 All Rights Reserved. HowtoForge Page 81 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 82 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

07. Step-by-Step C/C++ --- C Programming - Arrays
1. Introduction to arrays

2. About Arrays

3. Array Elements

4. Passing Arrays to Functions

5. Types of Arrays

- Single Dimensional Arrays
1. Append element
2. Insert element
3. Delete element
4. Replace element
5. Search element
6. Deletion of array
7. Sorting of an array

- Multi Dimensional Arrays
Matrix Operations using Multi Dimensional Arrays

1. Introduction to arrays

A variable can hold a constant value. Only a single constant value and it is not possible to hold more than one value in a variable.

The following example demonstrates the scope a variable.

int main()
{

int sno;

Copyright © 2009 All Rights Reserved. HowtoForge Page 83 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

sno = 1001;
sno = 1008;
sno = 1005;

printf(a€o8@a€s, sno);

return O;
}
Output:
1005

The above program is able to display only 1005, but not all the values (i,e. 1001, 1008, 1005).

Can we substitute the following program in place of the above program.

int main()

int sno;
sno 0 = 1001;
sno 1 = 1008;

sno 2 = 1005;
printf(a€c®@da€., sno);

Copyright © 2009 All Rights Reserved. HowtoForge Page 84 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

Output:
Nothing,
The above program displays alist of errors, because of the approach iswrong.

Let(TM)s continue with the following program to get O errors program.

int main()
{
int sno[3];
sno[0] = 1001;

sno[1] = 1008;

sno[2] 1005;

printf(a€o8@a€s, sno[2]);

return O;

}
[* 3vauesto beinsert */
[* First location to insert 1001 */
/* Next location to insert 1008 */
/* and Next location to insert 1005 */

Copyright © 2009 All Rights Reserved. HowtoForge Page 85 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

/* Prints the value of 2nd location */

Output:
Nothing

The above program displays alist of errors, because of the approach iswrong.

Depending on the above program, the variable sno can hold more than one student number. 1t(TM)s easy, by using multi-location technique, is aso known
as arrays.

2. About Arrays

Arrays contain anumber of dataitems of the same type. Thistype can be a ssmple datatype, a structure, or aclass. Theitemsin an array are called
elements. Number accesses elements; this number is called an index. Elements can be initialized to specific values when the array is defined.

Arrays can have multiple dimensions.

A two-dimensional array is an array of array. The address of an array can be used as an argument to afunction; the array itself is not copied. Arrays can be
used as member data in classes. Care must be taken to prevent data from being placed in memory outside an array.

[* The following program reads 4 persons age and displaysit */

/* 47 _arrays.c */
#i ncl ude <stdi o. h>

int main()

int age[4], i;

Copyright © 2009 All Rights Reserved. HowtoForge Page 86 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 87 of 276

http://mww.howtofor ge.com/

Learning C/C++ Step-By-Step

Syniax of an Amay Definifion

Data type of Array
Name of Array

Size of Array

Like other variablesin C, an array must be defined before it can be used to store information. And, like other definitions, an array definition specifiesa
variable type and a name.

But it includes another feature: a size. The size specifies how many dataitems the array will contain. It immediately follows the name, and is surrounded by
square brackets.

3. Array Elements

Theitemsin an array are called elements. Single Dimensional array accepts values to either row wise or column wise. It can store only one set of values.
Thefirst array element is 0, second is 1 and so on.

Copyright © 2009 All Rights Reserved. HowtoForge Page 88 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Array Elements

An array value can be initialized directly at design time.
Initialization of arraysisasfollows..

Copyright © 2009 All Rights Reserved. HowtoForge Page 89 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Initialization of Array

Assignment Operator

Initializing values

Nt agelfa] = 4 24515, 18, 1S9)

-

Commas

Armray size
[Optional] Braces

4. Passing Arrays to Functions Arrays can be used as arguments to functions.
In afunction declaration, the data type and sizes of the array represent array arguments.

voi d di splay(float [D SPLAY][MONTHS]) ;

When the function is called, only the name of the array is used as an argument.

di spl ay(sal es);

Program to accept and print array of 10 elements

Copyright © 2009 All Rights Reserved. HowtoForge Page 90 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 91 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

Returning array of values from functionsis also possible but we must be clear with the concept of pointers. Please look in to the pointers topics for more
info.

5. Classification of Arrays

Arrays are of two types.
1. Single dimensional Arrays
2. Multi Dimensional Arrays

1. Single Dimensional Arrays

A singledimensional array is a collection of elementsin a row or a column fashion.
A single dimensional array can accept the following operations.

1. Append element

2. Insert element

3. Delete element

4. Replace element

5. Search element

6. Deletion of array

7. Sorting of an array

The following program is able to perform all the tasks described above.

/* ARRAY FUNCTIONS */

/* 49 sarray.c */

Copyright © 2009 All Rights Reserved. HowtoForge Page 92 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 93 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 94 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 95 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 96 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 97 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 98 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 99 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 100 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 101 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 102 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

2. Double Dimensional Arrays

Copyright © 2009 All Rights Reserved. HowtoForge Page 103 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

A double dimensional array is a collection of elementsin row and column fashion.
A Multi dimensional array can accept the following operations.

A multi dimensional array is commonly used in the areas of matrices to understand whole tasksin an easiest approach.

MATRIX FUNCTIONS

/* 50_nenumat.c */
#define N 100
#define M 10

int i, j, r, c, rl, r2, cl, c2;

/* Read the values for a MATRI X */

void read_matrix(int AM[M)

printf("\nHow many rows? ");
scanf (" %", &) ;
printf("\nHow many colums? ");

scanf (" %", &c) ;

Copyright © 2009 All Rights Reserved. HowtoForge Page 104 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 105 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 106 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 107 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 108 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv
qillil = AliI0i] - BLiJLI]:

printf("\nDi fference of A and B is");

/* A MENU driven programto perform MATRI X operati ons */

#i ncl ude <stdi o. h>

#i ncl ude <coni o. h>

int main()

int AM[M,B[M[M,OM[M,T[M[M; char ch;

clrscr();

printf("\nEnter matrix A elements..\n"); read_matrix(A); rl=r; cl=c;

printf("\n Matrix A\ n"); disp_matrix(A);

printf("\nEnter matrix B elenments..\n"); read_matrix(B); r2=r; c2=c;

printf("\n Matrix B\n"); disp_nmatrix(B);

do {

printf("\'nl: Addition");

Copyright © 2009 All Rights Reserved. HowtoForge Page 109 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 110 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 111 of 276

Learning C/C++ Step-By-Step

if(cl==r2)

mul _matrix_1(C A B);

el se

printf("\nColums(cl) of Matrix A are NOT EQUAL TO');

printf(" Rows(r2) of Matrix B.");

printf("\nHence | cannot do this Matrix Miltiplication.");

printf("\nPlease enter matrices such that cl ==r2.");
} break;
case '4': printf("\nOrder of Matrix Ais % x %", r1,cl);

tra_matrix_1(T, A);

printf("\nOrder of A transpose is %l x %",cl,r1); break;

case '5': printf("\nThis will termi nate your program"); break;

printf("\nDo you wish to run again...[y/n]?"); ch=get che();

}while(ch!="5");

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 112 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

08. Step-by-Step C/C++ --- C Programming - Strings

Strings

- Introduction

- Characteristics of astrings

- Operations on Strings

1. Definition of Strings
2. Initialization of Strings
3. Reading and printing of Strings
4. Reading Embedded Blanks
5. Length of a String
6. Strings and Functions
7. Array of Strings

| ntroduction
Arrays are used to examine strings, generally strings are of array type variables.
A string isacollection of characters including space where asword is a collection of characters excluding space. Every string variable must be terminating

with ™ (TM) null character and the index valueis starts with 0.

Every string has the following characteristics:

Copyright © 2009 All Rights Reserved. HowtoForge Page 113 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

1. It must be a collection of characters (i.e. characters, numbers, and special characters).
2. Every string must be ends with aNULL character (i.e.” (TM))
3. A unique positive number called index identifies each character of a string.
4. Index value must be starts with O.
5. Random access on charactersin a string is possible.
6. A string must be declared with its fixed size like arrays.
For Example consider the following example:

char str =" magic";

Copyright © 2009 All Rights Reserved. HowtoForge Page 114 of 276

Learning C/C++ Step-By-Step

Data type — Characters in String
of string |

Terminating 0 or null
byte, represented by ‘W’
character constant

A variety of string library functions are used to manipulate strings. An array of stringsis an array of arrays of type char.

Operations on Strings

We can perform much better operations than using Library string functions.
Strings can accept the following operations.

1. Definition of Strings
2. Initialization of Strings
3. Reading and printing of Strings
4. Reading Embedded Blanks
5. Length of a String
6. Strings and Functions

7. Array of Strings

Copyright © 2009 All Rights Reserved. HowtoForge

http://mww.howtofor ge.com/

Page 115 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

1. Definition of a String

Every variable must be declared at the beginning of the program.
Definition of string variableis as follows.

Syatax of String Definition

Data type of string

Name of string
Size of string

Brackets delimit
the siring size

2. Initialization of Strings

Strings can beinitialized in the following methods.
1. Direct Assignment

char nanme[10] = "Ashitha";
Assigns "Ashitha' to name rest of the place left blank. 2. Direct Assignment without Size

char nane[] = "Ashitha";
Assigns "Ashitha' to name and fix it(TM)s width up to the size of Constant.
3. Design time Assignment

char nange[10] ;

Copyright © 2009 All Rights Reserved. HowtoForge Page 116 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

strcpy(nanme, "Ashitha");
Using Strings functionsit is possible.
But C never support the assignment like :
name ="Ashitha"; 4. Runtime Assignment

char nange[10] ;

scanf ("%", nane);

It accepts and assigns constant value to variable at runtime.
3. Reading and Printing Strings

C provides various types of string functions to read and print a string constant. Listed below.
I nput Statements

getch

getche

getchar

gets

scanfOutput Statements

putch

putchar

puts

printf

[* Program to accept and display a string */
/* 51 strings.c */

#i ncl ude <stdi o. h>

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 117 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* Program to accept and display a string with a prompt */

Copyright © 2009 All Rights Reserved. HowtoForge Page 118 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

4. Reading embedded blanks
scanf Accepts string, thusit will read strings consisting of a single word, but anything typed after a space is thrown away.

Eg. Enter String : Law is a bottomless pit.
You entered : Law

To read text containing blanks we use another function, gets().
*read string with embedded blanks */

/* 53 gets.c */
const int MAX = 80;

int main()

char str[MAX];
print("Enter a string :"); gets(str);
printf("You entered :"); puts(str);

return O;

5. Length of String

Copyright © 2009 All Rights Reserved. HowtoForge Page 119 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Every string has its fixed length depending on its constant.
The following program demonstrates, How to find the length of the string
[* To find the length of agiven string */

/* 53_length.c */
#i ncl ude <stdio. h>

int main()

int i=0;

char str[50];

printf("Enter a string "); gets(str);
while(str[i] !'="\0") i++
printf("Length is %", i);

return O;

6. Strings and Functions
A function is a self-contained block of statements that perform a specific task. The best way to organize strings.

The following are the example of string organization using functions.
[* Program to find the length of a string */

Copyright © 2009 All Rights Reserved. HowtoForge Page 120 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 121 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

/* Program to accept and print astring */

Copyright © 2009 All Rights Reserved. HowtoForge Page 122 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

{
int i=0;

while(s[i] !'="\0") putch(s[i++]);

7. Array of Strings
Arrays are used to examine strings, generally strings are of array type variables. So, we can access array of strings.
The following examplesillustrate, How Array of Strings organized.
[* Program to display an array of strings*/
/* 56_display.c */

#i ncl ude <stdi o. h>

voi d mai n()

{
char week[7][] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" };
int i;
for(i =0; i<7; i++) puts(week[i]);

}

Copyright © 2009 All Rights Reserved. HowtoForge Page 123 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

[* Program to accept and display an array of strings*/

/* 57_strings.c */
#i ncl ude <stdi o. h>

voi d mai n()

char nanes[7] [10] ; int i;
for(i = 0; i<7; i++) gets(nanmes[i]);
for(i =0; i<7; i++) puts(nanmes[i]);

09. Step-by-Step C/C++ --- C Programming - Pointers Pointers
1. About Memory

2. Addressing Scheme

3. How to find the address of a Variable

4. Pointers

5. Pointer Arithmetic

6. Pointers and Arrays

7. Pointers and Strings

8. Glossary

1. About Memory

Computer has the feature to store data, and manipulate them. Storage of data requires a storage device, which was comfortable to store and retrieve data

Copyright © 2009 All Rights Reserved. HowtoForge Page 124 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

quickly and accurately with out confusion. Commonly Computer has to compromise with two storage methods.

I Meann ory
| : 1
l Primary Main/nter nal Memory I SecondarylAu=ilary/External Memory

| I 1 |

[ram | ROM FD. HD. CD. Other...
| 1 | II 1
| SRAM | DRAM [PROM | EPROM |EEF‘RC}I'-.-'I
SRAM Static Random Access Memory
DRAM Dynamic Random Access Memory

EEPROM Electrically Erasable Programmable Read Only Memory

Memory chips can store data, instructions and intermediate & final results. The memory is organized into bytes, each byte capable of storing one character
of information. Each byte of memory has an address or location number, which uniquely identifiesit. The size of memory is measured either in kilobytes
(KB), megabytes (Mb), gigabytes or terabytes (TB).

RAM:

Memory deviceisa storage location to store information.

The Vita Computer resource memory is allocated to each of the variable after their declaration in the C-Program. The type of the variable decides the
number of bytes of memory to be allocated to each variable.

Copyright © 2009 All Rights Reserved. HowtoForge Page 125 of 276

Learning C/C++ Step-By-Step

Memory Map (RAM)

30336/504 86 \

30235

S038/808

2. Addressing Scheme

Copyright © 2009 All Rights Reserved.

Extended
Memory

HighMemory

Conventional
MDemory

4096

16 mb

1024 kb

640

HowtoForge

http://mww.howtofor ge.com/

Page 126 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

1048575

User Program
a=5;

The above picture tells you the following information.
1. RAM isatemporary memory and a part of the computer.

2. It can hold the value of program.
3. Every bytein RAM has identified with a unique positive number called address.
4. Addresses are as numbers, just as they are for houses on a street.
5. The number starts at 0 and go up from there 1-2-3 and so on.
6. If we have 640 KB of memory the highest address is 655, 359, for 1mb of memory it is 1,048,575.
7. Our program, when it is loaded into memory, occupies a certain range of these addresses.
8. That means that every variable and every function in out program starts at a particular address.

3. How to find the address of a Variable

In the last section point 8 tells each and every variable/function starts at a particular address. Addresses are unique positive numbers in the hexa decimal
format.

Copyright © 2009 All Rights Reserved. HowtoForge Page 127 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Finding address of avariable is a simple task through the operator & (address of).
& (addressof) - It can tell you the address of variable / function in the current program.

The following program demonistrates to find the address of a variable "a(TM)

/* 58 _address.c */

#i ncl ude <stdi o. h>

int main()

{
int a = 10;
printf("\n Value of Ais %", a);
printf("\n Address of Ais D %", &a);
return O;

Replace the above marked format values with the following format to get absolute hexadecimal address value.
O0x%x
Ex.

printf("\nAddress of Ais D Ox%", &a);

Copyright © 2009 All Rights Reserved. HowtoForge Page 128 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Program to find the address of function “disp()(TM)

Copyright © 2009 All Rights Reserved. HowtoForge Page 129 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

4. Pointers

According to the last section we know how to find and display the address of a variable/function.
Thistime we learn about how to store the address of a variable/function in another variable.

Note: Variables can hold constant values.
Try with the following:

int a, b;
a = b; /* Valid @
b = &a; /* In valid */

Again Try with the following:

int a, *b
a = b; /* Valid */
b = &a; /[* Valid */

b=&a; correct! Yes, variables (General variables) are unable to hold addresses. But variables proceeded with ™* (TM) (Pointer Variables) are able to hold
both constant values as well as address of another variables/functions.

Pointer: Variable that holds address values.
Variables (General)
General variable performs only one operation to hold constant values

Pointer variables (Variables preceded with ™ (TM))
Pointer variables can perform two operations to hold constant values as well as address values of other variables/functions

Copyright © 2009 All Rights Reserved. HowtoForge Page 130 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Referenceto / Pointer to / Content at address (*)

int *ptr;

To the uninitiated thisis arather bizarre syntax. The asterisk means pointer to. Thus the statement defines the variable ptr as a pointer to int. Thisis another
way of saying that the variable can hold the address of integer variables.
If we called it, type pointer we could write declaration like.

poi nt er ptr; /* invalid */
The problem isthat the compiler need to know what kind of variable the pointer points to.

Declaration of a pointer variable

char *cptr; /* Pointer to character */

int *iptr; /* Pointer to int */

float *fptr; /* Pointer to float */

struct enp *e; /* Pointer to abstracted data enp e */

Accessing the variable Pointed to: Here is the special way to access the values of a variable using its address instead of its name.

/* 60_addr.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 131 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

int main()

int varl = 11;

/* wvariable varl = 11 */

int *ptr; [* Variable ptr as pointer to */

ptr = &var; * Hold the address of var to ptr */

printf("Value of varlis %d", *ptr); [* Pointer to the address of varl */
return O,

Copyright © 2009 All Rights Reserved. HowtoForge Page 132 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

* Variable name

Oxd26 * Address

If the statement is printf (o%de, ptr); then it displays the value of ptr means the address of var1, but the above statement can display the content of the
address, which was stored in variable ptr.

Program to demonstrate the use of Address Of and Pointer_To

/* 61 _ptrdenp.c */
#i ncl ude <stdio. h>

int main()

int a =10, *p;

/* Integer a and pointer p */

p=&a [* Assign addressof atop */

Copyright © 2009 All Rights Reserved. HowtoForge Page 133 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

printf('nValueof A : %d", a); /* Content of a*/
printf("nAddressof A : 0x%x", &a); [* Addressof a*/
printf("nValue of P : Ox%x", p); /* Content of p*/
printf("nAddress of P : Ox%x", &p); [* Addressof p*/
printf("nContent at address of a : %d", *p); [* Pointer to &a*/
return O,

}

5. Pointer Arithmetic

All the variables can support arithmetic operations, as well as we can perform arithmetic operation on pointers also. C/C++ language can supports 4
Arithmetic operations on Pointers namely.

Operation

Addition

Subtraction

Incrementation

DecrementationSymbol
+

++

Note: The main characteristic of pointer arithmetic is that the above operatorsin bytes with reference to its variable type.

/* 62_ptr.c */
/* Denoni stration of pointer arithmetic */
#i ncl ude <stdio. h>

int main()

Copyright © 2009 All Rights Reserved. HowtoForge Page 134 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Output

101

Demonstration of Pointer arithmetic, Increment the address value

Copyright © 2009 All Rights Reserved. HowtoForge Page 135 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

a = 100;

p++; / Increnent the address value in p by 1 */
printf("%l", *p);

return O;

Output
Unexpected output

The above program illustrates the arithmetic operators with respective of both value and address incrementation. p is a pointer variable and a is assigned
with 100, as well as p is assigned with the address of a.

Now *p++ effects incrementing or actually skipping the memory by 2 bytesto get new address and their its content.

If it(TM)s (*p)++, then that the content pointed by p is 100 isincremented, resulting 101.

6. Pointersand Arrays

In C/C++ language the data types pointers and arrays resembles with each other. The array element references as well as the pointer variable, both are used
to hold the address of data el ementsin memory.

char name[20];

Or
char *name;

Copyright © 2009 All Rights Reserved. HowtoForge Page 136 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

char months[12][10];
Or
char **months;

Thereis a close association between pointers and arrays. Hereisareview on arrays.

/* 64_ptrarr.c */
#i ncl ude <stdio. h>

int main()

int i, a[5] = { 56, 43, 78, 98, 12 };
for(i =0, i <5; i++)
printf("\n%", afil]);

return O;

Thereis apossibility to access array elements using pointer notation.
Find the output of the following program.

/* 65 _ptrarr.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 137 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Follow the next program:

Copyright © 2009 All Rights Reserved. HowtoForge Page 138 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\n%", *(p+ i));

return O;

Hereis an easiest approach to print the elements of the given array (size not required).

/* 67_ptrarr.c */

#i ncl ude <stdi o. h>

int main()

int i, al] ={ 56, 43, 78, 98, 12 }, *p;

whi l e (*p) /* or for(int i =0; i<5 i++) */

printf("\n%", *p++);

return O;

7. Pointers and Strings

Copyright © 2009 All Rights Reserved. HowtoForge Page 139 of 276

Learning C/C++ Step-By-Step

http: //mww.howtofor ge.conv

A string isacollection of characters including spaces. This time we discuss about how to handle strings using pointers. No more discussions to make

confusion. Here isthe simple task to verify both pointer and array of strings.

Thereis a subtle difference between strings & pointers follow the program.

/* 68_ptrstr.c */

#i ncl ude <stdi o. h>

int main()

{
char stril[] = "You would |like to explore C.";
char *str2 = "You would like to explore C.";

puts(strl);

puts(str2);

strl++; /* Invalid expression */

str2++; /* Valid expression */

puts(str2); /* prints ou would |ike toa€; a€} */

return O;

Copyright © 2009 All Rights Reserved. HowtoForge

Page 140 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Strings as Function Arguments

A pointer variable is more flexible than array variables, Here is the program to demonstrate & displays a string with pointer notation.

/* 69_ptrarr.c */
#i ncl ude <stdi o. h>

voi d di sp(char *p);

int main()

{
char str[] = "Hello!!..Hello!!.. Pointers can handle it?";
di sp(str);
return O;

}

voi d di sp(char *p)

whi | e(*p)

printf("%", *p++);

Copyright © 2009 All Rights Reserved. HowtoForge Page 141 of 276

Learning C/C++ Step-By-Step

}

Array of pointersto strings

http: //mmw.howtofor ge.conv

Thereis a disadvantage to store an array of strings, in that the sub arrays that hold the string must all be the same length. So that space is wasted when

strings are shorter than the sub arrays.
Here is the solution:

/* 70_strings.c */
#i ncl ude <stdio. h>

int main()

char *weeks[7] = { "Sunday", "Monday", "Tuesday",

" Thur sday", "Friday", "Saturday" };

int i;

for(i = 0; i<7; i++)
put s(weeks[i]);

return O;

Copyright © 2009 All Rights Reserved.

"\Wednesday",

HowtoForge

Page 142 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

When strings are not part of an array, C/C++ places them contiguously in memory, So there is no wasted spaces.

/* An example program to hold an array of pointers of type“int(TM) */

/* 71 _ptrarr.c */
#i ncl ude <stdi o. h>

int main()

int *arr[4]; /* Array of int pointers */

int i =31, j =5, k=19, | =71, m
arr[0] = & ;
arr[1] = & ;
arr[2] = &k;
arr[3] = & ;

for(m= 0; m<= 3; mt+)

printf("\n%", *(arr[ni));

Copyright © 2009 All Rights Reserved. HowtoForge Page 143 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

A look on Library Functions

We are already familiar with standard string functions. They have string arguments that are specified using pointer notation,
If we are clear with pointers & strings concept, we are able to write our own string functions.
Here is an example program to copy string.

[* Copies one string to another with pointers */

/* 72_strcpyl.c */
#i ncl ude <stdio. h>

voi d strcpyl(char * dest, char *src);

int main()

char *strl = "How can | learn nore about G/ C++ !11";
char *str2;
strcpyl(str2, strl);

puts(str2);

Copyright © 2009 All Rights Reserved. HowtoForge Page 144 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

voi d strcpyl(char * dest, char *src)

whi | e(*src)
*dest ++ = *src++;

*dest = a€"\0ae™

8. Glossary

Address

A value that pointsto alocation in memory. A pointer contains the address or location of avalue, as opposed to the value itself.

Array

An array isacollection of dataitems of the same type.

Contiguous

Copyright © 2009 All Rights Reserved. HowtoForge Page 145 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

A storage characteristic that specifiesthat the values are stored in consecutive locations either in memory or on disk.

Function

A series of instructions to perform a specific task, which can be combined with other functions to create a program.

Memory

Descriptive of adevice or medium that can accept data, holds them, and deliver them on demand at alater time. Synonymous with — storage.

Pointer

Contains the address or memory location of avalue, as opposed to the value itself.

RAM

(Random Access Memory) 1. A storage device structured so that the time required retrieving datais not significantly affected by the physical location
of thedata. 2. Theprimary storage section of a personal computer.

String
An array capable of storing zero or more characters. In C. astring is declared as a character array with the NULL () character appended to specify the

end of the string.

Variable

A name associated with alocation in memory whose value can change during program execution.

Copyright © 2009 All Rights Reserved. HowtoForge Page 146 of 276

Learning C/C++ Step-By-Step

10. Step-by-Step C/C++ --- C Programming - Structure Structures

1. Introduction

2. Declaration of Structure

3. Defining a Structure Variable
4. Initializing a Structure Variable
5. Direct assignment of structures
6. Calculation of Structure size

7. Nested Structures

8. Array of Structures

9. Arrays within Structures

10. Passing Structures to Function
11. Returning Structures from Functions
12. Pointer To structure

13. Structure containing Pointers
14. Self Referential Structures

1. Introduction

int a[4] ={ 3, 4, 5 6 }; /* Valid expression */
int a[4] ={ 3, 4.23, 5, 6 }; /* Invalid expression */
int a[4 ={ 3, "Siglov", 5,3} /* Invalid expression */

http: //mww.howtofor ge.conv

Why the last two expressions are invalid? An array can store values of same type. Must be the same type. Where as a structure can hold more than one type

of data according to its definition.

¢ A group of one or more variables of different data types organized together under asingle name is called a structure or
¢ A collection of heterogeneous (dissimilar) types of data grouped together under a single name is called a structure or

¢ A structureis a collection of ssmple variables. The variable in a structure can be of different types. The dataitemsin a structure are called the members

of the structures.

Copyright © 2009 All Rights Reserved.

HowtoForge

Page 147 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

2. Declaration of a structure

When a structure is defined the entire group is referenced through the structure name. The individual components present in the structure are called as the
structure members and these can be accessed and processed separately.

Syntax of the Structure Specifier

struct < struct name >

Eg:

struct date

{
int day;
int nonth;

int year;

Copyright © 2009 All Rights Reserved. HowtoForge Page 148 of 276

Learning C/C++ Step-By-Step

struct student

{
int sno;
char nane[20] ;
int marks;

float avg;

3. Defining a Structure Variable

Defining a structure variable is the same as that for defining a built-in data type such asint.

inta /* valid*/
date d; /* valid (But in C++ only) */
struct date d; /* valid in both C and C++ */

4. Initializing a Structure variable

http: //mmw.howtofor ge.conv

The members of the structure can be initialized like other variables. This can be done at the time of declaration or at the design time.

Copyright © 2009 All Rights Reserved.

HowtoForge

Page 149 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

1. Initialization at Declaration:

struct ddate

{
int day;
int month;
int year;

} d={ 27, 10, 2000 };

2. Initialization at Definition:
struct ddated = { 27, 10, 2000 };

- |nitialization at design time:

ddate d;
d.day = 27;
d.month = 10;
d.year = 2000;

4. |nitialization at run time:
scanf("%d%d%d", &d.day, &d.month, &d.year);

Eg:

/* Wite a programto accept and print the details of an enpl oyee */
/* 73_struct.c */
#i ncl ude <stdio. h>

struct enp

Copyright © 2009 All Rights Reserved. HowtoForge Page 150 of 276

Learning C/C++ Step-By-Step

int eno;

char nange[20] ;

float sal;

i

int main()

{
struct enp e;
printf("Enter Enpl oyee nunber :"); scanf("%", &e.eno);
printf("Enter Enployee name :"); scanf("%", e.nane);
printf("Enter Enployee sal ary :"); scanf("%", &e.sal);
printf("\n\nEnpl oyee Details are as followsa€}.\n");
printf ("%l Y%s %", e.eno, e.nane, e.sal);
return O;

}

5. Direct assignment of structures

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 151 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Direct assignment of more than one variable is made possible using structures.

struct enp a, b = {1001, "Vimal", 6700.00 };

a = b; /* Valid */

printf("% % %" , a.eno, a.nane, a.sal);
Output:
1001 Vima 6700.00

6. Calculation of structure size

Every datatypein C/C++ has a specified size, i.e int has 2 bytes of size, float has 4 bytes of size and so on. Hereis the way to find the size of a structure
variable.

si zeof .- Thisfunction is used to find the size of a given variable.
printf("%l", sizeof(int)); [* 2 *
printf("%l", sizeof(float)); [* 4 */
printf("%l", sizeof(struct enp)); /* Displays the size of the enp structure */

7. Nested Structures

Structure with in structures in known as nested structures. For accessing nested structure members we must apply the dot operator twice in calling structure
members.

Ea:

Copyright © 2009 All Rights Reserved. HowtoForge Page 152 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 153 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

struct enp e;

printf("Enter enp_no, enp_nanme, enp_sal, street, city ");

scanf (" %% %% %", &e.eno, e.nanme, &e.sal, e.addr.street, e.addr.city);
printf("\n\nEnpl oyee Details are as follows a€}.\n");
printf("%%%%%", e.eno, e.nane, e.sal, e.addr.street, e.addr.city);

return O;

8. Array of Structures

We can create an array of structures. The array will have individual structures as its elements.

/* Wite a programto accept and print the details of an enpl oyee */
/* 75_array.c */
#i ncl ude <stdi o. h>

struct enp

int eno;

char nane[20] ;

Copyright © 2009 All Rights Reserved. HowtoForge Page 154 of 276

Learning C/C++ Step-By-Step

float sal;

int main()
{
struct enp e
[10]
Cint i
for(i =0;i<10; i++)
{
printf("Enter Employee number :"); scanf("%d", &€]i].eno);
printf("Enter Employee name :"); scanf("%s", €i].name);
printf("Enter Employee salary :"); scanf("%d", & €]i].sal);
}

printf("nnEmployee Details are as follows.n");
for(i = 0; i<10; i++)
printf("%d %s %d", €[i].eno, €i].name, €i].sa);
return O;
}

Nothing is new in the above program. Entire program is same as simple structured program except the marked data.

9. Arrayswith in Structures

http: //mmw.howtofor ge.conv

There may be a situation to utilize arrays with in structures. How to achieve arrays with in structures. Hereis the approach with simple program.

/* Programto accept and print a student information */

Copyright © 2009 All Rights Reserved. HowtoForge

Page 155 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 156 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("Enter student marks "); scanf("%l", &s.marks[i]);

printf("\n\nStudent Records is as foll owséa€;.\n");

printf("%l % % % %", s.sno, s.nanme, s.marks[0], s.marks[1l], s.marks[2]);

return O;

10. Passing Structuresto Functions

It is possible to send entire structures to functions as arguments in the function call. The structure variable is treated as any ordinary variable.

/* Programto pass a structure variable to function */
[* 77_funct.c */
#i ncl ude <stdi o. h>

struct enp

int eno;
char nange[10] ;

float sal;

Copyright © 2009 All Rights Reserved. HowtoForge Page 157 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

voi d di splay(struct enp tenp);

int main()

{
struct enp e;
di spl ay(e);
return O;

}

voi d di splay(struct enp tenp)

printf("%l % %", tenp.eno, tenp.nane, tenp.sal);

11. Returning Structures from functions

We can return structures from functions. Y es structures can be returned from functions just as variables of any other type.

/* Returning structure object froma function */

Copyright © 2009 All Rights Reserved. HowtoForge Page 158 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 159 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("\n\n% %", t.eno, t.nane);

struct enprec read()

{
struct enprec t;
printf("Enter Enployee nunber :"); scanf("%", &t.eno);
printf("Enter Enployee nane :"); scanf("%", t.nane);
return t;

}

12. Pointer to Structure

Till now we have seen that the members of a structure can be of datatypes like int, char, float or even structure. C/C++ language also permitsto declare a
pointer variable as a member to a structure. Pointer variables can be used to store the address of a structure variable also. A pointer can be declared asiif it
points to a structure data type.

/* Programto denonstrate the process of Pointer to structure */
/* 79_pointer.c */

#i ncl ude <stdio. h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 160 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

struct enpl oyee

int eno;

char nange[10] ;

struct enpl oyee *enp;

int main()

enmp = (struct enployee *)mall oc(sizeof (enp));

printf("Enter Employee Details..");
scanf("%d%s%", &emp->eno, emp->name);
printf("nn%d %s', emp->eno, emp->name);
return O;

}

The marked datais essential to implement pointer to structure.
The following statement is optional, but better to utilize to organize better memory management.
emp = (struct employee *)malloc(sizeof (emp));

13. Structures Containing Pointers

A pointer variable can also be used as a member in the structure.
The following program contains pointer members contained by a pointer variable of structure.

Copyright © 2009 All Rights Reserved. HowtoForge Page 161 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 162 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

output:
20 50

14. Salf Referential Structures

Structures can have members, which are of the type the same structure itself in which they are included. Thisis possible with pointers and the phenomenon
is called as self-referentia structures.

struct enp

int eno;

char nange[10] ;

struct enp *e;

Self-referential structures can be used mainly in arranging data, sorting, searching elements, insertion, deletion of elements and so on.

Thisway of approach leads to Data structures (i.e., Linked Lists, Stacks, Queues, Trees and Graphs).

Copyright © 2009 All Rights Reserved. HowtoForge Page 163 of 276

Learning C/C++ Step-By-Step

11. Step-by-Step C/C++ --- C Programming - UnionsUnions

1. Introduction
2. About Union
3. Declaration of aUnion

4. Defining aUnion Variable
5. Difference Between Structure and Union

6. Operations on Unions
7. Scope of aUnion

1. Introduction

/* 81 union.c */

#i ncl ude <stdio. h>

struct s_enp

int eno;

char nange[20] ;

float sal;

uni on u_enp

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 164 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int eno;
char nange[20] ;

float sal;

int main()

struct s_enp se;

uni on u_enp ue;

printf("\nSize of Enpl oyee structure ;. 9%d", sizeof(se));
printf("\nSize of Enpl oyee Union : %", sizeof(ue));
return O;

Output: Size of Employee Structure : 26
Size of Employee Union : 20

2. About Union

When alarge number of variables are requested to use in a program. They were occupies alarge amount of memory. Unions provide an easiest way to save
memory by using replacement technique. It uses same memory location for all type of variables.

A union isadatatypein C, which allows the overlay of more than one variable in the same memory area.

Copyright © 2009 All Rights Reserved. HowtoForge Page 165 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Characteristics of Unions.
1. Union stores values of different typesin asingle location in memory.
2. A union may contain one of many different types of values but only oneis stored at atime.
3. The union only holds avalue for one data type. If a new assignment is made the previous value has no validity.
4. Any number of union members can be present. But union type variable takes the largest memory occupied by its members.

3. Declaration of a Union

Union is a data type through which objects of different types and sizes can be stored at different times. Definition of a Union is same as a Structure. The
only change in the declaration is the substitution of the keyword union for the keyword struct.

Syntax of the Union Specifier

union < Union name >

Eg:
union ddate
{
int day;
int month;
int year;

Copyright © 2009 All Rights Reserved. HowtoForge Page 166 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

};union student

{ .
int sno;
char name[20];
int marks;
float avg;

};
4. Defining a Union Variable

Defining a Union variable is the same as structure and that for defining a built-in data type such asint.

int a; /* Valid */

union date d; /* Valid in both C and C++ */

Calculation of Union size

Every datatype in C/C++ has a specified size, i.e int has 2 bytes of size, float has 4 bytes of size and so on. Here is the way to find the size of a Union
variable.
sizeof :- Thisfunction isused to find the size of agiven variable.

printf("%l", sizeof(int)); /* 2 */
printf("o%", sizeof(float)); /* 4 */

printf("%", sizeof(union enp)); /* Displays the size of the enp union */

5. Difference between Structures and Unions

Copyright © 2009 All Rights Reserved. HowtoForge Page 167 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Here is the difference between Structures and Unions

Structure

1. It can hold different types (variables) in asingle location.

1. It can hold different types (variables) in different locations.

2. It may contain more than onetype (variable) but only oneis stored at atime.

2. It may contain more than onetype (variable) al are stored in memory at atime.

3. Any number of union members can be present. But union type variable takes the largest memory occupied by its member.

3. It requires memory of thesizeof all its members.

4. On its process only one member can be accessed at any given time.

4. Onits process all the memberscan be access at any time.

5. The scope of union isthe function and the scope of its membersis also same as the union itself. (They can be accessed directly in the program).

Copyright © 2009 All Rights Reserved. HowtoForge Page 168 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

5. The scope of Structureisthe function only. Structure members are unable to access directly inthe program.

6. Operations on Unions

A union isaso similar to structure it can perform all the operations like structures. Operations on Union are listed below.
¢ A union variable can be assigned to another union variable.
¢ A union Variable can be passed to afunction as a parameter
¢ The address of the union variable can be extracted by using the address-of operator (&).
¢ A function can accept and return aunion or a pointer to a union.

/* 82_union.c */

#i ncl ude <stdio.h>

uni on u_enp

int eno;

char nange[20] ;

float sal;

int main()

uni on u_enp ue;

Copyright © 2009 All Rights Reserved. HowtoForge Page 169 of 276

Learning C/C++ Step-By-Step

printf("Enter Enployee Number : "); scanf("%l", &ue.eno);
printf("Enter Enpl oyee Nane : "); scanf("9%", ue.nane);
printf("Enter Enployee Salary : "); scanf("%", &ue.sal);

printf("\n\nEnpl oyee Details are as follows...\n");
printf("% % % ", ue.eno, ue.nane, ue.sal);

return O;

Whait is the output?
Only ue.sal is correct. What about rest of variables.

http: //mmw.howtofor ge.conv

At any instant only one of the union variables will have a meaningful value. Only that member, who islast written, can be read. At this point, other
variables will contain garbage. It is the responsibility of the programmer to keep track of the active variable (i.e. variable which was last accessed).

Here is the best way to accept and display records of an employee.

/* 83_enp.c */
#i ncl ude <stdio. h>

uni on u_enp

int eno;

Copyright © 2009 All Rights Reserved.

HowtoForge

Page 170 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

char nange[20] ;

float sal;

HE

int main()

{
uni on u_enp ue;
printf("\nEnter Enployee Nunber : "); scanf("%l", &ue.eno);
printf("\n%", ue.eno);
printf("\nEnter Enployee Nanme : "); scanf("%", ue.nane);
printf("\n%", ue.nane);
printf("\nEnter Enployee Salary : "); scanf("%", &ue.sal);
printf("\n%", ue.sal);
return O;

}

7. Scope of a Union

The scope of union is different than structure. A structure variable can be accessed by the its functions only. Where as a union and its members can be
accessed by its function.

Copyright © 2009 All Rights Reserved. HowtoForge Page 171 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

[* 84 scope.c */
#include <stdio.h>
int main()

{ .
union
{ . .
inti;
char c;
float f;
|3

I =10; c="a(TM); f =4.5; /[* Union members*/

printf("The value of cis : %c", ¢);

return O;

}
12. Step-by-Step CorC++ --- C Programming - FilesFile Handling

| ntroduction

Let(TM)s find the output of the following program.

Copyright © 2009 All Rights Reserved. HowtoForge Page 172 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

#include <stdio.h>
int main{)

{

int sno, sub1, sub?2, sub3;
char name[20];

printf(“Enter a student record sno, name, sub1, sub2, sub3 respectivelyin™);
scanf{*%d %s %d %d %din”, &sno, name, &sub1, &subl, &subl);

printf(“inStudent record is as follows.........");
printf(“%d%s%d%d%d\n”, sno, name, sub1, sub2, sub3);
return 0;

Y es, it accepts arecord of student information and displaysiit.
Hereis the same program, but included statements with a few modifications.

Copyright © 2009 All Rights Reserved. HowtoForge Page 173 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

#include =stdio.h=
int main()

{

int sno, sub1, sub2, subl;
char name[20];

FILE *fp = fnpen:“stud.da@

printf(“Enter a student record sno, name, sub1, sub2, sub3 respectively\n™);
scanf{”%d %s %d %d %din”, &sno, name, &sub1, &sub2, &subl);

printf{“in Student record is as follows.........");
dprintf{fp)“% d%s % d%d%d\n”, sno, name, sub1, sub2, sub3);
refamm U;

Above two programs are same, but the second program contains a highlighted statement (F1LE *fp = fopen(osstud.date, cea+e);) and a few modifications
like“fprintf(TM), “fp(TM). Only few modifications included. These modifications affect datato transfers from console to diskette in the file stud.dat. This

process is known as file control/file management/file organization. Thisis an easiest way to transfer the output from monitor to file using file control
statement.

Copyright © 2009 All Rights Reserved. HowtoForge Page 174 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Output redirected
and records will

be store in a disk.

<

General Program

Actually file processing involved with alot of operations as well as methods to implement. Here is the actual process to handlefiles.

File Handling

Generally every program has to present the resulted values on the screen (1st program illustrates this). But those values are removed from the memory
whenever the program is terminated. If we want to keep records permanently, save themin afile. Every file has afew operations, hereisafew;

Copyright © 2009 All Rights Reserved. HowtoForge Page 175 of 276

Learning C/C++ Step-By-Step

* Create file
» Open file
* Close file
File A file is a collection of records Record
Record Record is a collection of fields File
Field A Field is an individual data element. Yenn Di
Field
Name
[Eno Name Sal gf@
1001 Ashitha 4500
1002 Symala 8900
1009 Kashyap 5600
ol
& o
File
Copyright © 2009 All Rights Reserved. HowtoForge

http://mww.howtofor ge.com/

Page 176 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Here is the list of file processing statements.

File Operations Command
Open an existing file fopen
Close file close
Record Operations Command
Add record fprintf
Retrieve record from the begin fscanf
Insert record fwrite
Retrieve record from pointer fread
Record Navigation Command

Places the pointer to the beginning of the file rewind
Move the pointer from one record to another fseek

To find the record pointer position ftell

|s end of file feof, eof

Miscellaneous I/O Operations Command

Read/write character on file fgetc / fputc,
fgetchar / fputchar

Read/write string on file fgets / fputs

File Operations

fopen

Opens the stream filename in the mode mode & if succeeded, Returns a pointer to the newly open stream; or Null other wise.

Copyright © 2009 All Rights Reserved. HowtoForge Page 177 of 276

Learning C/C++ Step-By-Step

ntax

FILE *fopen(const char *filename, const char * mode):

E.q.
FILE *fp = fopen("stud.dat”, "r"); /* Readfromfile */

FILE *fp = fopen("emp.dat", "w"); /* Writeto file */
FILE *fp = fopen("emp.dat", "at+"); [* Read and Write on file */

Mode:
The mode string used in calls to fopen, is one of the following values:

Mode Description

r Open for reading only

w Create for writing (If afile by that name already exists, it will be overwritten).
a

Append; open for writing at end of file, or create for
writing if thefile does not exist.
r+ Open an existing file for update (reading and writing)
w+ Create anew file for update (reading and writing).
If afile by that name already exists, it will be overwritten.
at Open for append; open for update at the end of thefile, or
create if thefile does not exist.

To specify that agiven file is being opened or created in text mode,
append "t" to the string (rt, w+t, etc.).

To specify binary mode, append "b" to the string (wb, _a+b, etc.).

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mww.howtofor ge.conv

Page 178 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

fclose

Closesthe file pointed to by fp & returnsO on success, EOF isreturned in case of error

Syntax

Int fclose(FILE *fp);

eg.
Fclose(fp); fclose(stud); fcloseall();

fprintf

Sends formatted output to a stream. Uses the same format specifiers as printf, but sends output to the specified stream. Returnsthe number of bytes
output or EOF in case of error.

ntax

Fprintf(fptr, oControl Stringe, list);

Eg

Fprintf(fp, od %s %d %d %de, sno, name, subl, sub2, sub3);
fprintf(emp, c%d %s %de, eno, name, sal);

Copyright © 2009 All Rights Reserved. HowtoForge Page 179 of 276

Learning C/C++ Step-By-Step

fscanf

Thisfunctionisusedtoread a formatted datafrom a specified file.

ntax:

Fscanf(fptr, ogControl Stringe, list);

Eg

Fscanf(fp, o%d %s %d %d %de, & sno, name, & subl, & sub2, & sub3);
fscanff(emp, o&d %s %de, &eno, name, &sal);

fwrite

Fwrite appends a specified number of equal-sized dataitems to an output file.

ntax:

Size t fwrite(const void *ptr, Size t size, size t n, FILE*stream);
Argument What It |s/Does
Ptr Pointer to any object; the datawritten begins at ptr
Size Length of each item of data
N Number of data items to be appended
stream Specifies output file
The total number of byteswrittenis (n* size)

—
=
o

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mww.howtofor ge.conv

Page 180 of 276

Learning C/C++ Step-By-Step

Fread retrieves a specified number of equal-sized dataitems from an input file.

Syntax

Size t fread(void *ptr, Size t size, Size t n, FILE*stream);
Argument What It |s/Does
_ptr Pointer to any object; the data written begins at ptr
size Length of each item of data

n Number of dataitems to be appended

stream Specifies output file
Thetotal number of byteswrittenis(n * size)

rewind

Repositions file pointer to stream's beginning

ntax

Void rewind(FILE *stream);
E.g. fewind(fp);
Rewind(stream) is equivalent to fseek(stream, OL, SEEK_ SET)

except that rewind clears the end-of-file and error indicators, while fseek only clears the end-of-file indicator. After rewind,

update file can be either input or output.

fseek

http: //mww.howtofor ge.conv

the next operation on an

Thefile pointer for the stream is positioned at offset number of bytes calculated from the position specified by whence. Offset may be zero, negative, or
positive. The defined symbols SEEK_CUR, SEEK_SET & SEEK_END are used as whence specifiersto indicate current position. BOF & EOF

respectively. Returns O if successful or nonzero on failure.

Copyright © 2009 All Rights Reserved. HowtoForge

Page 181 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

ntax

Int fssek(FILE *stream, long offset, int whence);

ftell

Returns the current file pointer position on successor Negative value on error.

Syntax

Long ftell(FILE *stream);

feof

It is amacro to return nonzero if end-of-file hasbeen reached on the stream.

ntax

Int feof(FILE *stream):;

eof

Checks whether the position marker in thefile given by itshandleis at the end-of-file. If yes, returns O, 1 isreturned if position marker isNOT at eof &
an error isindicated by setting of errno & return value of -1.

Copyright © 2009 All Rights Reserved. HowtoForge Page 182 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

ntax

Int eof(int _handle);

foets/
fputs

The function fgets/fputs gets/puts a string(of sizen bytes) on the file pointed to by stream and returns end-of-file on error.

ntax

Char *fgets(char *s, int n, FILE *stream);

foetc/fputc
ntax

Reads/writes a character from a stream.
Int fgetc/fputc(FILE *stream);

fgetchar/
fputchar

These are equivalent to the above fgetc/fputc.

Write a program to read a student data and store it in adatafile.

/* Programto create a student data file */

Copyright © 2009 All Rights Reserved. HowtoForge Page 183 of 276

Learning C/C++ Step-By-Step

/* 85 wite.c */

#i ncl ude <stdio.h>

#i ncl ude <ctype. h>

#i ncl ude <coni o. h>

int main()

int sno, subl, sub2, subs3;

char nane[10], ch;

FILE *fp = fopen("stud.dat", "w');

do{

clrscr();

printf("Enter Student nunber

printf("Enter Student nane

printf("Enter 3 Subjects Marks

"); scanf("%l", &sno);

"); scanf("%", nane);

")

scanf (" %%%l", &subl, &sub2, &sub3);

fprintf(fp, "% % % % %\ n",

printf("\n\nDo you want to cont...

Copyright © 2009 All Rights Reserved.

name, subl, sub2, sub3);

(y/n)"); ch = getche();

HowtoForge

http: //mmw.howtofor ge.conv

Page 184 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Write a program to retrieve data from a student datafile.

Copyright © 2009 All Rights Reserved. HowtoForge Page 185 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

printf("Student Records are as follows....\n");
do{
fscanf (fp, "%W%%%%\n", &sno, name, &subl, &sub2, &sub3);
printf("%d¥d5s9%3d¥8d%3d\ n", sno, nane, subl, sub2, sub3);
}while(!feof (fp));
fclose(fp);

return O;

13. Step-by-Step C/C++ --- C++ Programming - OOPSOOP (Object Oriented Programming) in C++
1. Object Oriented Paradigm
2. Characteristics of Object-Oriented Language
- Objects
- Classes
- Data abstraction
- Dataencapsulation
- Inheritance
- Polymorphism
- Dynamic binding
- Message passing
3. History of C++
4. Classes and Objects
5. Member functions defined outside the class
6. Array of Objects
7. Objects as Arguments

Copyright © 2009 All Rights Reserved. HowtoForge Page 186 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

8. Returning Objects from functions
9. Constructor

10. Destructors

11. Constructor Overloading

12. Static Class Data

13. Static Member Functions

14. Friend Functions

1. Object Oriented Paradigm

The basic idea behind the Object Oriented Paradigm isto combine into a single unit of both data and the functions that operate on that data. Such aunit is
called an object.

Through this method we cannot access data directly. The datais hidden, so, is safe from
Accidental alteration. Data and its functions are said to be encapsulated into a single entity. Data encapsulation and data hidings are key termsin the
description of object-oriented language.

A C++ program typically consists of a number of objects, which communicate with each other by calling one another(TM)s member functions. The
organization of a C++ program is shown in this figure.

Copyright © 2009 All Rights Reserved. HowtoForge Page 187 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Object Oriented Paradigm

Object
Data

Member Functions

Member Functions

Obiject : " Object

Data Data

Member Functions Member Functions

Member Functions ' | Member Functions

2. Characteristics of Object-Oriented Lanquage

Here are few major elements of Object-Oriented languages.
- Objects

- Classes

- Data abstraction

- Dataencapsulation

- Inheritance

- Polymorphism

- Dynamic binding

- Message passing

Copyright © 2009 All Rights Reserved. HowtoForge Page 188 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Objects
Object isan instance of a class. Combining both data and member functions. Objects are the basic run-time entities in an object-oriented system.

Classes
A template or blueprint that defines the characteristics of an object and describes how the object should ook and behave.

Data Abstraction

| dentifying the distinguishing characteristics of a class or object without having to process all the information about the class or object. When you create
aclass"” for example, a set of table navigation buttons" you can use it as asingle entity instead of keeping track of the individual components and how they
interact.

Data Encapsulation

An object-oriented programming term for the ability to contain and hide information about an object, such asinternal data structures and code.
Encapsulation isolates the internal complexity of an object's operation from the rest of the application. For example, when you set the Caption property on a
command button, you don't need to know how the string is stored.

Inheritance
An object-oriented programming term. The ability of a subclass to take on the characteristics of the classit's based on. If the characteristics of the parent
class change, the subclass on which it is based inherits those characteristics.
To inherit the qualities of base classto derived class.

Polymorphism

An object-oriented programming term. The ability to have methods with the same name, but different content, for related classes. The procedureto use is
determined at run time by the class of the object. For example, related objects might both have Draw methods. A procedure, passed such an object as a
parameter, can call the Draw method without needing to know what type of object the parameter is.

Dynamic Binding

Dynamic refersto the linking of a procedure call to the code to be executed in response to the call. Dynamic binding means that the code associated with
agiven procedure call is not known until the time of the call at run-time. It is associated with polymorphism and inheritance. A function call associated
with a polymorphic reference depends on the dynamic type of that reference.

Message Passing

Copyright © 2009 All Rights Reserved. HowtoForge Page 189 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

An object-oriented program consists of a set of objects that communicate with each other. The process of programming in an object-oriented language
therefore involves the following basic steps:

1. Creating classes that define objects and their behavior.
2. Creating objects from class definitions.
3. Establishing communication among objects.

3. History of C++

Year Language Developedby Remarks

1960 ALGOL International Committee Too general, Too abstract

1963 CPL Cambridge University Hard tolearn, Difficult to implement

1967 BCPL Martin Richards Could dea with only specific problems

1970 B Ken Thompson AT & TBellLabs Could dea with only specific problems
1972 C Dennis Ritchie AT & TBelllLabs Lost generality of BCPL and B restored
Early 80(TM)s C++ Bjane Stroustrup AT & T Introduces OOPs.

C++ isan object-oriented programming language. Initially named “C with Classes(TM), C++ was developed by Bjarne Stroustrup at AT & T Bell
laboratoriesin Murry Hill, New Jersey, USA, in the early eighties.

Stroustrup, an admirer of Simula67 (an OOP language) and a strong supporter of C, wanted to combine the best of both languages and create a more power
and elegance of C. Theresult was C++.

C++isatruly Object Oriented Language, So. It must be a collection of classes and objects.

4. Classes and Objects

A classisaway to bind the data and its associated functions together. It allows the data to be hidden, if necessary, from external use. When defining a class,

we are creating a new abstract data type that can be treated like any other built-in datatype. Generally, a class specification has two parts:
1. Class declaration

2. Class function definition

The declaration specifies the type and scope of both data and member functions of class. Where as definition specifies the executable code of the function.

The general form of aclass declaration is:

Copyright © 2009 All Rights Reserved. HowtoForge Page 190 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

cl ass cl ass_nane

private:
vari abl e decl arati ons;
function decl arati ons;
publi c:
vari abl e decl arati ons;

function decl arati ons;

The class declaration is similar to struct declaration. The key word class specifies that the data and functions be of private by default. Where as a struct key
word specifies that the data and functions be of public by default. The keywords private and public are known as visibility |abels.

Copyright © 2009 All Rights Reserved. HowtoForge Page 191 of 276

Learning C/C++ Step-By-Step

Classes Contain Data and Functions

Class

Datal
Data2

Functions

Funcii()
Funci)

Here is an example class to implement an employee class.

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 192 of 276

Learning C/C++ Step-By-Step

Syntax of a Class Specifier

Keyword class

it b e

EIELS .Emp, Name of Class

{ .

private : Keyword private and colon
: I | L heat]
int eno; : _
char name[10]; Private functions and data
float sal;
public: — Keyword public and colon
void gﬂtdﬂtﬂﬂ - |
{
cin == eno => name => sal;
void putdata() Pubilc functions and data
{
cout << eno << name << sal;
) i
1
\-\‘\ semicolon
%]

The following is the complete program of emp class.

/'l Programto accept and display enpl oyee infornmation

#i ncl ude <i ostreanr

Copyright © 2009 All Rights Reserved. HowtoForge

http://mww.howtofor ge.com/

Page 193 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 194 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

e. putdata();

return O;

5. Member functions defined outside the class

Thereisapossibility to define member functions outside of the class using scope resolution operator (::).

/'l Programto accept and display enpl oyee infornmation
#i ncl ude <i ostreanv
usi ng nanespace st d;

cl ass enp /1l class definition

private : /] private data, functions
int eno;
char nane[10] ;
float sal;

public : /'l public data, functions

Copyright © 2009 All Rights Reserved. HowtoForge Page 195 of 276

Learning C/C++ Step-By-Step

void getdata();

void putdata();

voi d enp:: getdata()

{ cin >> eno >> nane >> sal;

voi d enp:: putdata()

{ cout << eno << nane << sal; }

int main()

{
enp €;
e.getdata();
e. putdata();
return O;

}

6. Array of Objects

C++ compiler also supports array of objects.
Below exampleillustrates the advantage of Objects using arrays.

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mmw.howtofor ge.conv

Page 196 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 197 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()
{
enp e[10]; /'l declaration of array of objects
for(i = 0; i <10; i++) /] accessing objects properties and met hods
e[i].getdata();
for(i =0; i< 10; i++)
e[i].putdata();
return O;
}

7. Objects as Arguments

Passing Objects to functionsis similar to passing structures, arrays to functions. The following program demonstrates how objects passed to functions.

/'l Programto accept and display enpl oyee information
#i ncl ude <i ostreanv
usi ng nanmespace std;

class enp /1 class definition

Copyright © 2009 All Rights Reserved. HowtoForge Page 198 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 199 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

}

voi d operate(enp t)

{
t.getdata();
t.putdata();
return O;

}

8. Returning Objects from functions

We saw objects being passed as arguments to functions, now we will discuss about how to return objects from functions.

/'l Programto accept and display enpl oyee information
#i ncl ude <i ostrean
usi ng namespace std;

class enp /1l class definition

private : /] private data, functions

int eno;

Copyright © 2009 All Rights Reserved. HowtoForge Page 200 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 201 of 276

Learning C/C++ Step-By-St http: //mmw.howtofor ge.conv
g ep-By-step

return O;

enp get ()

emp t;

t.getdata();

return t;

void put(enp t)

t.putdata();

9. Constructor

The following example shows two ways to give values to the data items in an object. Sometimes, however, it(TM)s convenient if an object can initialize
itself when it(TM)s first created, without the need to make a separate call to a member function.

Automatic initialization is carried out using a special member function called a constructor. A constructor isamember function that is executed
automatically whenever an object is created.

Copyright © 2009 All Rights Reserved. HowtoForge Page 202 of 276

Learning C/C++ Step-By-Step

/'l Programto accept and display enpl oyee information using constructors

#i ncl ude <string. h>

#i ncl ude <i ostrean»

usi ng namespace std;

class enp /1l class definition

private : /] private data, functions

int eno;

char nang[10] ;

float sal;

public : /'l public data, functions

enp() {; 1} /] constructor w thout arguments

enp(int teno, char tnane[10], float tsal) // constructor with argunents

eno = teno;

strcpy(nane, tnane);

sal = tsal;

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 203 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

voi d getdata()
{ cin >> eno >> nanme >> sal; }
voi d putdata()

{ cout << eno << nane << sal << endl; }

IE
int main()
{
enp e1(1001, "Magic", 6700.45);
enp e2;
e2.getdata();
el. putdata();
e2. putdata();
return O;
}

The above example program accepts values in two ways using constructors and using member functions. An object, whenever it was declared it

Copyright © 2009 All Rights Reserved. HowtoForge Page 204 of 276

Learning C/C++ Step-By-Step

automatically initialized with the given values using constructors. Where as object €2 is accessible by its member function only.

One more example to distinguish the use of constructor.

// bjects represents a counter variable
#i ncl ude <i ostreanv
usi ng nanmespace std;

class counter

{
private
int count; /] variabl e count
pubi | c
counter () { count = 0; } I
void inc_count() { count++; } /] increment count
int get_count() { return count; }
b
int main()
{

Copyright © 2009 All Rights Reserved.

constructor

/] return count

http: //mww.howtofor ge.conv

Page 205 of 276

Learning C/C++ Step-By-Step

counter cl, c2; /1

cout << &€@nCl = a€ce<< cl.get_count();

cout << &€@nC2 = a€ce << c2.get_count();

cl.inc_count();

c2.inc_count();

c2.inc_count();

cout << a€®@nCl = a€ce<< cl.get_count();

cout << a€®@nC2 = a€ce<< c2.get_count();

return O;

A constructor hasthe following characteristics.
- Automatic initialization
- Return values were not accepted
- Same name as the class
- Messing with the format

10. Destructors

A destructor has the same name as the constructor (which is the same as the class name) but preceded by atilde:

/! Denonstration of a destructor

#i ncl ude <i ostreanw

Copyright © 2009 All Rights Reserved.

define and initialize

/1

/1

/1

[l display

increnent cl

increnent c2

increnent c2

/1 display again

HowtoForge

http: //mmw.howtofor ge.conv

Page 206 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

usi ng namespace std;

class tenp

private
int data;
public
temp() { data = 0; } /'l Constructor (same nane as cl ass)
~temp() { } // destructor (sanme nane with tilde)
}
int main()
{
tenp t;
return O;

11. Constructor Overloading

The ability to have functions with the same name, but different content, for related class. The procedure to use is determined at run time by the class of the

Copyright © 2009 All Rights Reserved. HowtoForge Page 207 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

object.

Copyright © 2009 All Rights Reserved. HowtoForge Page 208 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 209 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

ttime t1, t2(12, 12, 12), t3(4, 5), t4(11); /Il Calling constructors
t1l.get _time();
t1. put _tinme();
t2.put_tine();
t3. put_tine();
t4. put_tinme();

return O;

12. Static Class Data

If adataiteminaclassisdefined as static, then only one such item is created for the entire class, no matter how many objectsthere are. A static dataitem
is useful when al objects of the same class must share acommon item of information. A member variable defined as static has similar characteristicsto a
normal static variable: It isvisible only within the class, but its lifetime is the entire program.

/! Denonstration of a static data

#i ncl ude <i ostrean»

usi ng nanespace std;

Copyright © 2009 All Rights Reserved. HowtoForge Page 210 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 211 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Out put of the above program is as follows: (if it(TM)s still static)
Count is 3
Count is 3
Count is 3
Out _put of the above program (if it(TM)s automatic)
Count isl
Count isl
Count isl

13. Static Member Functions

Like static member variable, we can also have static member functions. A member function that is declared static has the following properties.
- A static functions can have access to only other static members (functions or variables) declared in the same class.
- A static member function cab be called using the class name (instead of its objects) as follows:

class-nane :: function-nane;

/'l Programto denonstrate static nmenmber function
#i ncl ude <i ostrean
usi ng namespace std;

class test

int code ;

static int count; /] static nenber variable

Copyright © 2009 All Rights Reserved. HowtoForge Page 212 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 213 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

14. Friend Functions

Copyright © 2009 All Rights Reserved. HowtoForge Page 214 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

class abc

{
public:

friend void xyz{void); !/ declaration

)

Private members cannot be accessed from outside the class. That is, anon-member function can(TM)t have an access to the private data of aclass.
However, there could be a situation where we would like two classes to share a particular function. 1t(TM)s simply achieved through Eriend functions.
A friend function possesses certain special characteristics:

- Itisnot in the scope of the classto which it has been declared asfriend.
- Since it is not in the scope of the class, it cannot be called using the object of the class. It can be invoked like a normal function without the help of any
object.
- Unlike member functions, it cannot access the member names directly and has to use an object name and dot membership operator with each member
name.
- It can be declared either in the public or the private part of a class without affecting its meaning.
- Usually, it has the objects as arguments.
/'l Programto denonstrate friend function
#i ncl ude <i ostreanr

usi ng namespace std;

class test

Copyright © 2009 All Rights Reserved. HowtoForge Page 215 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 216 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

cout << "Mean value =" << sum(x) << endl;

return O;

One more example to implement afriend functions as a bridge between two classes.
The following program creates two objects of two classes and afunction friendly to two classes.
In this example friend function is capable of accessing both classes data members and cal cul ates the biggest of both class data members.

#i ncl ude <i ostrean»

usi ng nanespace st d;

cl ass second;

class first

{
int a;
publi c:
first(int tenp) { a = tenp; }
friend void max(first, second);
IE

cl ass second

Copyright © 2009 All Rights Reserved. HowtoForge Page 217 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 218 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

max(f, s);

return O;

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

14. Step-by-Step C/C++ --- C++ Programming - | nheritancel nheritance
Introduction
Derived class and Base class
Specifying the Derived Class
Derived Class Constructors
Access Specifiers
Public
Private
Protected
Access Specifiers without Inheritance
Protected Access Specifier
Scope of Access Specifiers
Access Specifiers with Inheritance
Types of Inheritance
Single Inheritance
Multiple Inheritances
Multilevel Inheritance
Hybrid Inheritance
Hierarchy Inheritance

| ntroduction

Inheritance is the most powerful feature of Object Oriented programming. Inheritance is the process of creating new classes, called derived classes from

Copyright © 2009 All Rights Reserved. HowtoForge Page 219 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

existing or bases classes. The derived class inherits all the capabilities of the base class but can add embellishmentsand refinements of its own.
A class, called the derived class, can inherit the features of another class, called the base class.

To inherit the qualities of base classto derived classisknown asinheritance.
Its noun is heritage. We know in our daily lives, we use the concept of classes being derived into subclasses. For E.g. Vehicleis classit's again divided
into Cycles, Bikes, Autos, trucks, busses and so on.

Here Vehicleis known as Base class and the derived items are known as derived classes or subclasses._

Generaly every base classhasalist of qualities and features. The main theme in thisinheritance isto share all the common characteristics of base class to
derived classes.

Copyright © 2009 All Rights Reserved. HowtoForge Page 220 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Base class

Derived classes

Inheritance has an important feature to allow reusability. One result of reusability is the ease of distributing classlibraries. A programmer can use a class
created another person or company, and, without modifying it, derive other classes from it that are suited to particular situations.

Derived class and Base class

A class, called the derived class, can inherit the features of another class, called the base class.
The derived class can add other features of its own, so it becomes a specialized version of the base class. Inheritance provides a powerful way to extend
the capabilities of existing classes, and to design programs using hierarchical relationships.

Accessibility of base class members from derived classes and from objects of derived classes is an important issue. Objects of derived classes can access
data or functionsin the base class that are prefaced by the keyword protected from derived classes but not. Classes may be publicly privately derived from
base classes. Objects of a publicly derived class can access public members of the base class, while objects of a privately derived class cannot.

Diagram shows how Derived class inherits.

Copyright © 2009 All Rights Reserved. HowtoForge Page 221 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Base clnss“

Derived class

Definedin
bass class but
accessible from
derived class

Definedin
derived class

A class can be derived from more than one base class. Thisiscaled multipleinheritances. A classcan aso be contained within another class.

Specifying the Derived Class

Class declaration is so easy using the keyword class as well as the derived class declaration is also easy but the class must be ends with its base classid and
access specifier.
Syntax to declare a derived class:

Class <Class name> : <Access Specifier> <Base Class Name> |

For. E.g. classresult_: public stud;

Copyright © 2009 All Rights Reserved. HowtoForge Page 222 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

[* programto accept and display a student record */

#include <iostream>
using namespace std;
class add
{ -
private :
char str[20];
char city[20];
int pin;
public :
void get_add()
{

cout <<"Enter Address street,city,pin”;
cin >> street >>city>>pin;
}
void put_data()
{
cout << "Addressis "<<sdtr
<<endi<<city <<endl<<pin;
}
};
classstud : public add
{
private :
int sno;
char name[20];
int m1,m2,m3;
public :
void get_data()
{
cout << "Enter Student No. "; cin >> sno;
cout << "Enter Student Name "; cin >> name;

Copyright © 2009 All Rights Reserved. HowtoForge Page 223 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

cout << "Enter Student 3subjects marks ";
cin >>ml<<m2<<m3;
}
void put_data()
{
cout << "Student number :" << sno;
cout << "Student name " << name;
cout << "Student marks " <<ml<< " " <<m2<<" "<<m3;
}
};
int main()
{
studs;
s.get_add();
s.get_data();
s.put_add();
s.put_data();
return O;
}

Diagramed explanation for the above program

Copyright © 2009 All Rights Reserved. HowtoForge Page 224 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Derived Class Constructors

If aclassisdeclared withitsown constructorsit is abase class of another. The derived classis also having its own constructors. If an object is declared
which isthe constructor will be executed? No doubt it executed the constructor of the derived class. It you still want to execute the constructor of Base
class or both Derived and Base class constructors simply call the Base constructor in Derived class constructor.

/* Constructors in derived class */
#i ncl ude <iostreane

usi ng nanespace std;

Copyright © 2009 All Rights Reserved. HowtoForge Page 225 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 226 of 276

Learning C/C++ Step-By-Step

publi c:

Sub() : Add() { }

Sub(int c) : Add(c) { }

Sub operator -- ()

a--;

return Sub(a);

int main()

Sub obi;

Sub 0b2(100);

cout << "\nMbl =" << obl.get_val();

cout << "\nM2 =" << ob2.get_val();

obl++; obl++; obl++;

cout << "\nMhl =" << obl.get_val();

Copyright © 2009 All Rights Reserved.

/1

/1

[l

Il

/1

/1

Il

/1

/1

/1

Constructor, no args

Constructor, one args

decrenent value of A return

an unnaned tenporary object

initialized to this Val ue

class Sub

di spl ay

di spl ay

increnent obl

di spl ay

HowtoForge

http: //mmw.howtofor ge.conv

Page 227 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

ob2--; ob2--; /] decrenent ob2

cout << "\nOh2 =" << ob2.get_val(); /] display

Sub ob3=0b2--; /I create ob3 from ob2
cout << "\nM3 =" << ob3.get_val(); /1 display

return O;

ACCESS SPECIFIERS

Access specifiers are used to control, hide, secure the both data and member functions. Access specifiers are of 3 types
- Public Access Specifier

- Private Access Specifier

- Protected Access Specifier.

Public :
If amember or dataisapublic it can be used by any function with in class and its derived classes also.
In C++ members of astruct or union are public by default.
Public Member of aclass can be inherited to the derived class when the classis inherited publicly but not the member functions(privately).

Private :

Member functions and friend of the classin which it is declared can only useit.

Members of aclass are private by default.

Private member of a class doesn(TM)t be inherited to a derived class when the base classisinherited publicly or privately. It there is need we have to
write member function, which are returns, those values.

Protected :

Copyright © 2009 All Rights Reserved. HowtoForge Page 228 of 276

Learning C/C++ Step-By-Step

http://mww.howtofor ge.com/

It is access as the same as for private in addition, the member can be used by member functions and friends of classes derived from the declared class but

not only in Objects of the derived type.

The protected member of aclass can be inherited to the next derived class only. But not to the later classes.

Access Specifiers without | nheritance

class C

menmhers

Member functions of
chss C can aceess hoih Il'l Eﬁiiﬁﬁm |(———
private and pub e

—T

can access only
P ublic memb ers
of C

More About Protected Access Specifier

To provide the functionality without modifying the class. Protected can accessed by it self and derived class-protected members only but in objects or the

subderived class or the outside class.

Scope of Access Specifiers
Access Specifier Accessible from
Own class Accessible from
derived class Accessible from
Objects outside class

Copyright © 2009 All Rights Reserved.

HowtoForge

Page 229 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Public Yes Yes Yes
Protected Yes Yes No
Private Yes No No

Access specifierswith I nheritance

Access specifiers with Inheritance

class Base

Types of I nheritance

Copyright © 2009 All Rights Reserved. HowtoForge Page 230 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

Types of Inheritance

1. Single Inheritance :
If a class is derived from a base class is called single inheritance.

A 2B

2. Multiple Inheritance :
If a class is derived from more than one Base class is called Multiple
Inheritance.

3. Multilevel Inheritance :
If a class 1s derived from a dertved class 1s called Multilevel Inheritance.

Copyright © 2009 All Rights Reserved. HowtoForge Page 231 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

4. Hybrid Inheritance :
The class with a combination of both Multilevel and Multiple Inheritances is
known as Hybrid Inheritance.

*

=Y

3. Hierarchy Inheritance :
It consists of a Base class and its multiple derived classes. The Base class has
the ability to control all the derived classes.

= Bl
B e

/*
Programto denpbnstrate Multiple Inheritance
*/
#include <iostream>
using namespace std;
class M

{

Copyright © 2009 All Rights Reserved. HowtoForge Page 232 of 276

Learning C/C++ Step-By-Step

protected :
int m;
public :
void getm()
{
cout << "nEnter M value :";
cin >>m;
}
b
classN
{
protected :
int n;
public :
void getn()
{
cout <<"nEnter N value :";
cin >>n;
}
H
classP: public N, public M
{
public :
void disp()
{
cout <<"'n M = "<<m;
cout <<"'n N = "<<n;
cout <<"n M*N = " <<m*n;
}
b
int main()
{
Pp;

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 233 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

p.getm();
p.getn();
p.disp();
return O;

}

If abaseclassis publicly inherited then the public members, member function can be accessible to the member functions of the derived class and to the
Objects also where as If a base classisinherited privately then the public member of base class are inherited to the member functions of the derived class
only but not to the objects.

/*
A programto denpnstrate Miltilevel |nheritance
*/
class student

{ .
int rno;
public:
void getrno()
{
cout << "Enter Number :";
cin >> rno;
}

void showrno()

{

cout << "Student Number:" << rno;
}
};
classtest : public student
{
int m1,m2;

public :
void getmarks()

Copyright © 2009 All Rights Reserved. HowtoForge Page 234 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

{

cout <<"Enter marks1 :": cin>>ml;
cout <<"Enter marks2 :" : cin>>m2;

}
int retml1()

{

return mi;

}
int retm2()

{

return mz2;
}
} .

classresult : public test

{ .
int tot;
public:
void get()
{
getrno();
getmarks();
}
void showresult();
void show()
{
showrno();
showresult();
}
H
void result::showresult()
{
int s1,s2;
sl=retml();

Copyright © 2009 All Rights Reserved. HowtoForge Page 235 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

s2=retm2();
tot=s1+s2,
cout <<"nMarks " << sl<<" "<< 82;
cout <<"nTotal marks " <<tot;
}
int main()
{
result a;
aget();
a.show();
return O;

}

/*
Program to denonstrate Hybrid I nheritance
*/
#include <iostream>
using namespace std;
class student

{

int rno;
public:
void getrno()
{
cout <<"Enter Number :";
cin >>rno;
}

void showrno()

{
}

cout << "nStudent Number :" << rno;

};

Copyright © 2009 All Rights Reserved. HowtoForge Page 236 of 276

Learning C/C++ Step-By-Step

classtest : public student
{
protected :
int m1,mz2;
public :
void getmarks()
{

cout <<"Enter marks1 :"; cin>>mi;
cout <<"Enter marks2 :"; cin>>m2;

}
void showmarks()

{
}

cout <<"nMarks of 2 subjects” << ml<<" " <<m2;

H
class sports
{
protected :
int score;
public :
void getscore()
{

cout <<"Enter Score :":

cin >> score;
}
};

classresult : public test, public sports

{
public :
void getdata()
{
getrno();
getmarks();

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 237 of 276

Learning C/C++ Step-By-Step

getscore();

}
void putdata()

{
showrno();
showmarks();
cout << "nScore is " << score;
cout <<"nTotal marks " << ml+m2;

}

|3

int main()

{
result r;
r.getdata();
r.putdata();
return O,

}

Pictorial representation of the above program:

Copyright © 2009 All Rights Reserved.

HowtoForge

http://mww.howtofor ge.com/

Page 238 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

L To=t | [Seor=]
=== |

In the above figure student class inherited to result intwo ways. Oneisviatest another oneis via sports then two sets of members, member functions of
common base class student are inherited to the derived class result at the time of execution the system will get confuse to use what set of member
functions of base class.

This can be avoided by making the common base class asvirtual base class.

Eg:
cl ass student { };
class test : virtual public student { };
class sports : virtual public student { 1
class result : public test, sports { };

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

15. Step-by-Step C/C++ --- C++ Programming - Operator OverloadingOperator Overloading

1. Introduction
2. Operator

Copyright © 2009 All Rights Reserved. HowtoForge Page 239 of 276

Learning C/C++ Step-By-Step

¢ Rules of Operator Overloading

¢ Restrictions on Operator Overloading
3. Overloading Unary Operators
4. Overloading Binary Operators
5. Operator Overloading with Strings

1. Introduction

// Assign a variable to anot her
#i ncl ude <iostreanr
usi ng nanespace std;

int main()

int a = 10, b;

b = g
[/ valid

cout << b;
return O;

/] Assign an object to another

#i ncl ude <iostreane

Copyright © 2009 All Rights Reserved.

HowtoForge

http: //mww.howtofor ge.conv

Page 240 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

usi ng namespace std;

class enp

publi c:
int eno;

float sal;

int main()

enp el= { 1001, 2300.45 },e2 ;
cout << endl << el.eno << el.sal;

e2 = el;
[/ valid

cout << endl << e2.eno << e2.sdl;
return O;

Expressions are common in every language; an expression is a collection of operands and operators. Where as an operation is a collection of expressions.
The above two programs demonstrate how variables/objects were assigned together.

Both programs are valid, they demonstrates the use of equalto (=) operator.

Copyright © 2009 All Rights Reserved. HowtoForge Page 241 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

/I using operator + to perform an arithmetic operation with variables
#include <iostream:=

using namespace std;
int main()

inta=10,b =15, c;

c=a+b; /I valid expression
cout << ¢;
return 0;

Copyright © 2009 All Rights Reserved. HowtoForge Page 242 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

/[using operator + to perform an arithmetic operation with objects
#include <iostreams>
using namespace std;
class emp
{
public:
int eno;
float sal;
|5

int main()

emp el={ 1001, 2300.45 }, e2=el1,e3;
cout =< endl =< el.eno << e1.sal;

[l lllegal structure operation
cout =< endl =< el.eno =< el.sal;

Operator overloading is one of the most exciting feature of object-oriented programming. It is used to overcome the situation like the above illegal
structure operation. It can transform complex, obscure program listing into intuitively obvious ones.

Through Operator overloading we can see how the normal C++ operators can be given new meanings when applied to user-defined data types. The
keyword operator is used to overload an operator, and the resulting operator will adopt the meaning supplied by the programmer.

For example using object we can perform direct string assignment operation.

I/l Programto assign a string to other
#i ncl ude <string.h>

#i ncl ude <stdio.h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 243 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 244 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv
string s2;
s2 = sl;

s2.putstring();

return O;

2. Operator

type operator operator-symbol (parameter-list)

The operator keyword declares afunction specifying what operator-symbol means when applied to instances of a class. This gives the operator more than
one meaning, or "overloads" it. The compiler distinguishes between the different meanings of an operator by examining the types of its operands.

Rules of Operator Overloading

- Y ou can overload the following operators:

+ - * | % 7

| = < > += -=

A= &= [< >> &=
<= >= && || ++ -
() [] new deete & |
~ * = /= %= >>= ==
1= -> ->*

- If an operator can be used as either aunary or abinary operator, you can overload each use separately.

- Y ou can overload an operator using either anon-static member function or a global function that's afriend of aclass. A global function must have at least

Copyright © 2009 All Rights Reserved. HowtoForge Page 245 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

one parameter that is of classtype or areference to class type.
- If aunary operator is overloaded using a member function, it takes no arguments. If it is overloaded using a global function, it takes one argument.
If abinary operator is overloaded using a member function, it takes one argument. If it isoverloaded using agloba function, it takes two arguments.

Restrictions on Operator Overloading

- Y ou cannot define new operators, such as**.

- Y ou cannot change the precedence or grouping of an operator, nor can you change the numbers of operands it accepts.
- Y ou cannot redefine the meaning of an operator when applied to built-in data types.

- Overloaded operators cannot take default arguments.

- Y ou cannot overload any preprocessor symbol, nor can you overload the following operators:

*

?:

The assignment operator has some additional restrictions. It can be overloaded only as a non-static member function, not as afriend function. It is the only
operator that cannot be inherited; aderived class cannot use a base class's assignment operator.

3. Overloading Unary Operators

Let(TM)s start off by overloading a unary operator. Unary operators act on only one operand. (An operand is simply a variable acted on by an operator).

Copyright © 2009 All Rights Reserved. HowtoForge Page 246 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Examples of unary operators are the increment and decrement operators ++ and --, and the unary minus.

Example:
The following example demonstrates the use of increment operator ++.

#i ncl ude <iostreanr

usi ng namespace std;

class counter

private:

unsi gned int count;

publi c:

counter(){ count =

|
o
—

int get_count() { return count; }

count er operator ++()

count ++;
counter tenp;

tenp. count = count;

Copyright © 2009 All Rights Reserved. HowtoForge Page 247 of 276

Learning C/C++ Step-By-Step

return tenp;

ki
int main()
{
counter cl, c2; /[l c1= 0, ¢c2=0
cout << "\nCl = << cl.get_count(); /] display
cout << "\nCQ2 = << c2.get_count();
++cl;
llcl=1
C2=++Cl; Icl=2,c2=2

cout << "nCl=" <<cl.get_count(); //display again
cout <<"nC2=" << c2++.get_count(); //c2=3
return O;

}

One more example to overloading unary minus.

#i ncl ude <i ostreanr

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mmw.howtofor ge.conv

Page 248 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 249 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()

subtract s;
s.getdata(34, -6);
cout << endl << "S:

s. putdata();

cout << endl << "S:

s. putdata();

return O;

4. Overloading Binary Operators

But operators can be overloaded just as easily as unary operators. We will ook at examples that overload arithmetic operators, comparison operators, and

Copyright © 2009 All Rights Reserved. HowtoForge Page 250 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

arithmetic assignment operators.

We have just seen how to overload a unary operator. The same mechanism can be used to overload a binary operator.

// Overl oadi ng + operator

#include <iostream>
using namespace std;
classtime

{
int hh; int mm; int ss;
public:
time() { }

time(int h, int m, int s)

{

}
void disp_time()

{

hh=h; mMm=m; ss=¢;

cout << endl << hh<< " ;"
<<mm<<":"<<ss

}

time operator+(time);

};

time time::operator+(time t)
{ .
time temp;
temp.hh = hh + t.hh;
temp.mm = mm + t.mm;
temp.ss=ss+t.ss,

Copyright © 2009 All Rights Reserved. HowtoForge Page 251 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

return temp;

}

int main()
{
timet1(12,1,24) , t2(5, 23, 45), t3;
t3=11+12;
t3.disp_time();
return O;

}
5. Operator Overloading with Strings

C/C++ dealswith strings quite differently; we never copy, concatenate, or compare strings using operators like other languages. C/C++ has built functions
to perform the above operations. But C++ provides the facility to do every thing on strings using operators. That means we have to provide extra
responsibility to operators to perform such things.

The following example demonstrates the comparison between two strings using comparison operator ==.

// Programto conpare two strings using operator overloading

#include <string.h>
#include <stdio.h>
#include <iostream>
using namespace std;

enum boolear{ false, true};
class string

{

char *str;

Copyright © 2009 All Rights Reserved. HowtoForge Page 252 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

public:
string() { *str = NULL; }
string(char *s) { str =s; }
int operator ==(string ts)
{
if (stremp(str, ts.str) >=0)
return true;
else
return false;

};

int main()
{
string s1("Computer");
string s2(" Computers');
if(sl ==s2)
cout << "Equal";
else
cout << "Not Equal";

return O;

[/ concatenation of two strings

#include <string.h>
#include <stdio.h>

Copyright © 2009 All Rights Reserved. HowtoForge Page 253 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

#include <iostream>
using namespace std;

class string
{
char *str;
public:
string()

{
str = new char[30] ;
*str = NULL;
}
string(char *s) { str=s; }
string operator +(string ts)
{
string t;
streat(t.str, str);
streat(t.str, ts.str);
return t;

}
void putstring()

{
}

cout << endl << str;

};

int main()

{
string s1("Computer"); string s2("'Institute”);
sl.putstring(); s2.putstring();
string s3;

S3=8l+s2;

Copyright © 2009 All Rights Reserved. HowtoForge Page 254 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

s3.putstring();
return 0,

}

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

16. Step-by-Step C/C++ --- C++ Programming - Polymor phismPolymorphism
1. Function Overloading

2. Polymorphism

3. Types of polymorphism

4. Normal member functions accessed with pointers

5. Virtual Function

6. Pure Function

7. Assignment and Copy-Initialization

8. The COPY Constructor

9. "this(TM) Pointer

1. Function Overloading

If afunction with its name differed by arguments behavior is called functions polymorphism or function overloading.

// An exanple programto denonstrate the use of function overl oadi hg

#include <iostream>
using namespace std;
void printline()

{

}

void printline(int n)

for(int i=0;i<=80; i++) cout << "-";

Copyright © 2009 All Rights Reserved. HowtoForge Page 255 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

{
for(inti =0 ;i<=n;i++) cout << "-";
}
void printline(int n,char ch)
{
for(int i=0;i<=n; i++) cout << ch;
}
int main()
{
printline();
printline(5);
printling(10, ™*(TM));
return O;
}

Polymorphism

Polymorphism is one of the crucial features of OOP. It ssimply means one name, multiple forms. We have already seen how the concept of polymorphism
isimplemented using overloaded functions and operators. The overloaded member functions are selected for invoking by matching arguments, both type
and number. The compiler knows thisinformation at the compile time and therefore compiler is able to select the appropriate function for a particular call
at the compiletime itself. Thisiscaled early binding or static binding or static linking. Also known as compile time polymorphism, early binding
simply means that an object isbound to its functions call at compile time.

Now let us consider a situation where the function name and prototype is the same in both the base and derived classes. For example, considers the
following class definitions.

#i ncl ude <i ostrean»

usi ng nanespace st d;

Copyright © 2009 All Rights Reserved. HowtoForge Page 256 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 257 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

return O;

How do we use the member function show() to print the values objects of both the classes A and B ? Since the prototype of show() isthe samein the
both places, the functionisnot overloaded and therefore static binding does not apply. In fact, the compiler does not know what to do and defers the
decision.

It would be nice if the appropriate member function could be selected while the program is running. Thisis known as runtime polymorphism. How
could it happen? C++ supports a mechanism known as virtual function to achieve runtime polymorphism. At runtime, when it is known what class
objects are under consideration, the appropriate version of the functionis called.

Since the function is linked with a particular class much later after the compilation, this processistermed as late binding. It isalso known as dynamic
binding or dynamic linking because the selection of the appropriate function is done dynamically at runtime.

3. Types of Polymorphism

Polymorphism is of two types namely.
1

Compile time polymorphism

Or Early binding

Or Static binding

Or Static linking polymorphism.

An object is bound to its function call at compile time.
2
Runtime polymorphism

Or late binding
Or Dynamic binding

Copyright © 2009 All Rights Reserved. HowtoForge Page 258 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

Or Dynamic linking polymorphism.

The selection and appropriate function is done dynamically at run time.

Polymorphism

Compile time Runtime
Polymorphism Polymorphism
' l
Function Operator Virtual
Overloading Overloading Functions

Achieving polymorphism

Dynamic binding is one of the powerful features of C++. Thisrequires the use of pointers to objects. We shall discuss in detail how the object pointers and
virtual functions are used to implement dynamic binding.

4. Normal Member Functions Accessed with Pointers

The below program consist of a base class

/*
Nor mal
functions accessed from pointer */

Copyright © 2009 All Rights Reserved. HowtoForge Page 259 of 276

Learning C/C++ Step-By-Step

/* Polymorphism with classes (without using VIRTUAL polymorphism */
#include <iostream>
using namespace std;

class BASE
{
public :
void disp() { cout <<"nYou arein BASE class"; }
b
class DERIVEDL1 : public BASE
{
public :
void disp() { cout <<"nYou arein DERIVEDL1 class"; }
H
class DERIVED?2 : public BASE
{
public :
void disp() { cout <<"nYou arein DERIVED2 class"; }
1
int main()
{
DERIVED1 d1; /I Object of derived class 1
DERIVED2 d2; /I Object of derived class 2
BASE *b; I pointer to base class
b=&d1; /I Assign address of d1 in pointer b
b->disp(); /I call to disp()
b=&d2; /I Assign address of d2 pointer b
b->disp(); // call to disp()
return O;

Copyright © 2009 All Rights Reserved. HowtoForge

http: //mww.howtofor ge.conv

Page 260 of 276

Learning C/C++ Step-By-Step

The above program demonstrates:
¢ A BASE class
¢ DERIVED1, DERIVED?2 classes derived from BASE
¢ Derived classes objects (d1,d2)
¢ BASE class pointer *b

Output

You arein BASE class
You arein BASE class

5. Virtual Function

Virtual means existing in effect but notin reality.

A member function can be made as virtual function by preceding the member function with the keyword virtual.

[* Polynorphismw th dasses (Virtual polynorphism

#include <iostream>
using namespace std;
classB

{
public :

void show(){ cout << "nclass B method Show() ";}
virtual void disp() { cout << "nclass B method disp()”; }

Copyright © 2009 All Rights Reserved.

http: //mww.howtofor ge.conv

Page 261 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

classD : public B
{
public :
void show(){ cout << "nclass D method Show() ";}
void disp(){ cout << "nclass D method disp()"; }

};

int main()
{
D di;
di1.show();
dldisp(); // Base class member

B b;
D d;
B *Bptr;
Bptr = &b;
Bptr->show();
Bptr->disp(); // Base class member

Bptr=&d;
Bptr->show(); // derived class members
Bptr->disp(); // Base class member
return O;

}

Output

class D method Show()
class D method disp()

6. Pure Function

Copyright © 2009 All Rights Reserved. HowtoForge Page 262 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

A function defined in a base class and has no definition relative to derived classis called pure function. In simple words a pure function is a virtual
function with no body.

#i ncl ude <i ostrean»

usi ng namespace std;

class B

public :

void show(){ cout << "\nclass B nethod Show() *“; }

virtual void disp() = 0; // pure virtual function

class D: public B

{
public :
voi d show(){cout << "\nclass D nethod Show() "; }
void disp(){ cout << "\nclass D nethod disp()"; }
ik

Copyright © 2009 All Rights Reserved. HowtoForge Page 263 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

int main()

D di;
dl.show(); // QP : Cass D nmethod show()

dl. disp(); /I QP : dass D nmethod disp()

D d;

B *Bptr;

Bpt r =&d;
Bptr->show(); // QP : Cass B nmethod show()
Bptr->disp(); // QP : Cass D nmethod disp()

return O;

Bptr -> show() isthe default executable function from Base
Bptr -> disp() isthe default executable function from Base but it is declared as a virtual pure function so at runtime Derived class's disp() will be called.

Copyright © 2009 All Rights Reserved. HowtoForge Page 264 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 265 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 266 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 267 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 268 of 276

Learning C/C++ Step-By-St http: //mmw.howtofor ge.conv
g ep-By-step

for(int j=0; j<n; j++)

nanmes[j] - >shownane();

i f(nanmes[j]->i sGadeA()==true)

cout << "He is Grade 1 person";

return O;

7. Assignment and Copy-I nitialization

The C++ compiler isaways busy on your behalf, doing things you can(TM)t be bothered to do. If you take charge, it will defer to your judgement;
otherwiseit will do thingsits own way. Two important examples of this process are the assignment operator and the copy constructor.

You(TM)ve used the assignment operator many times, probably without thinking too much about it. Suppose al and a2 are objects. Unlessyou tell the
compiler otherwise, the statement.

a2 =al; /l set a2 to thevalueof al

Will cause the compiler to copy the data from al, member-by-member, into a2. This isthe default action of the assignment operator, =.
You(TM)re also familiar with initializing variables, initializing an object with another object, asin

alphaa2(al); //initialize a2 to the value of al

Copyright © 2009 All Rights Reserved. HowtoForge Page 269 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv
Causes asimilar action. The compiler creates a new object, a2, and copies the data from al, member-by-member, into a2. This isthe default action of the
copy constructor.

Both these default activities are provided, free of charge, by the compiler. If member-by-member copying iswhat you want, you need take no further
action. However, if you want assignment of initialization to do something more complex, then you can override the default functions. We(TM)II discuss
the techniques for overloading the assignment operator and the copy constructor separately.

Overloading the Assignment Operator

/Il COverl oading the Assignnent (=) Operator

#i ncl ude <i ostrean»

usi ng nanespace st d;

cl ass al pha

private:

int data;

publi c:

al pha() { } /1 no-arg constructor

al pha(int d)

{ data = d; } // one-arg constructor

voi d display()

Copyright © 2009 All Rights Reserved. HowtoForge Page 270 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 271 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

cout << "\n a3 = "; a3.display(); // display a3
return O;
}
Output:
a2=37
a3=37

8. The COPY Constructor

As we discussed, we can define and at the same time initialize an object to the value of another object with two kinds of statement:

alpha a3(a2); // Copy initializing
alpha a3 = az; [/l copy initialization, alter nate syntax

Both styles of definition invoke a copy constructor: that is, a constructor that copiesits argument into anew object. The default copy constructor, Which
is provided automatically by the compiler for every object, performs a member-by-member copy. Thisissimilar to what the assignment operator does; the
difference isthat the copy constructor also creates also creates a new object.

The following example demonstrates the copy constructor.

#i ncl ude <i ostrean»

usi ng nanespace std;

Copyright © 2009 All Rights Reserved. HowtoForge Page 272 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.com/

Copyright © 2009 All Rights Reserved. HowtoForge Page 273 of 276

Learning C/C++ Step-By-Step http: //mmw.howtofor ge.conv

cout << "\nAssignnment operator invoked";

int main()

al pha al(37);

al pha a2;

a2 = al; [// invoke overloaded =

cout << "\na2 = "; a2.display(); // display a2

al pha a3(al); // invoke copy constructor

/| aphaa3=al; /I equivalent definition of a3
cout << "na3 ="; ad.display(); // display a3
return O;

The above program overloads both the assignment operator and the copy constructor.

Copyright © 2009 All Rights Reserved. HowtoForge Page 274 of 276

Learning C/C++ Step-By-Step http: //mww.howtofor ge.conv

The overloaded assignment operator is similar to that in the past example.

9. "this(TM) Pointer

C++ usesaunique keyword called thisto represent an object that invokes a member functions. Thisis a pointer that points to the object for which this
function was called.

This pointers smply performs make task to return object it self.

The following program definesi, | objects and i is assigned with the value of 5 and the entire object of i is assigned by its member function to |

#i ncl ude <i ostreanv
usi ng nanespace st d;

class A

int a;

publi c:

A0 {1}

Alint x)

voi d di splay()

Copyright © 2009 All Rights Reserved. HowtoForge Page 275 of 276

Learning C/C++ Step-By-Step http://mww.howtofor ge.com/

cout << a;
}
A get ()
{

return *this;

/I Return it self

}
1
int main()
{
Ai(5);
Aj;
j = i.get();

j.display();
return O;

}

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

Copyright © 2009 All Rights Reserved. HowtoForge Page 276 of 276

