
Learning C/C++ Step-By-Step

By Ganesh Kumar Butcha
Published: 2009-01-07 18:03

Learning C/C++ Step-By-Step 01. Step-by-Step C/C++ --- Introduction

Many people are really interested in learning and implementing C/C++ programs on their favorite platforms like DOS/Windows or Linux. If you are the
one looking for a step-by-step guide to get started, this tutorial is for you. Let me know your comments on  my tiny attempt to serve the community.

 Contents

  I. About C
- What is C ?    
- Development of C language    
- C as a general purpose Language    
- History of C    
- Features of C  

II. Programming Basics 
- Components of a program	  
- Constants	  
- Data types	  
- Numeric Data Type	  
- Non-Numeric Data Type	  
- Integer Data Type	  
- Real Data Type	  
- Logical Data Type	  
- Enumerated Data Type

  Introduction to Language & ExpressionsWhat is C?

C is a compiler based programming language supports both high level and low level statements to interact directly with the hardware.

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 1 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     Development of C Language

  The C programming language evolved from a succession of programming languages developed at Bell Laboratories in early 1970s. It was not until the late
1970s that this programming language began to gain widespread popularity and support. This was because until that time C compilers were not readily
available for commercial use outside of Bell Laboratories.

  The C language was the outcome of Dennis Ritchie(TM)s work on a project in Bell Laboratories, to invent a suitable high level language for writing an
Operating System which manages the input and output devices of a computer, allocates its storage and schedules the running of other programs.

  UNIX operating system is written in the C language. Hence the Unix Operating system has C as its standard programming language. In fact over 90% of
the operating system itself is written in the C language. So originally C language was designed and implemented on the Unix Operating System.

     C as a general purpose Language

C is a high level, procedural/structured, and general purpose programming language and resembles few other high level languages such as Fortran, Pascal,
and PL/1. However, we cannot call the C language as a œPurely High Level Language•.

  C stands somewhere between the high-level languages meant for carrying on special activities and the low level languages such as assembly language of a
machine because of some features like œSystem Independence•, œLimited Data Type•, œHigh Flexibility•, it is considered as a powerful language C has
also become popular because of its portability across systems. 

 History of C 
    Year   Language    Developed by       Remarks    
    1960      ALGOL      International  Committee       Too  general, Too abstract    
    1963      CPL    Cambridge University    Hard  to learn, Difficult to implement    
    1967     BCPL      Martin  Richards     Could  deal with only specific problems    
    1970    B    Ken  Thompson  AT  & TBell Labs     Could  deal with only specific problems   
    1972    C    Dennis  Ritchie AT  & TBell Labs       Lost  generality of BCPL and B restored   
    Early  80(TM)s     C++     Bjarne  Stroustrup AT  & T       Introduces  OOPs to C.  

 Features of C

  -    Simple, versatile, general purpose language

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 2 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  -    Programs are fast and efficient
  -    Has got rich set of operators
  -    more general and has no restrictions
  -    can easily manipulates with bits, bytes and addresses
  -    Varieties of data types are available
  -    separate compilation of functions is possible and such functions can be called by any C program
  -    block-structured language
  -    Can be applied in System programming areas like operating systems, compilers & Interpreters, Assemblers etc.,

 II. Programming BasicsComponents of a program

  1.    Constants
  2.    Variables
  3.    Operators
  4.    Statements

  So, before writing serious programming we must be clear with all the above components of programs. According to above example every program is a set
of statements, and statement is an instruction to the computer, which is a collection of constants, variables, operators and statements.

 Constants

  A constant is a fixed value, which never altered during the execution of a program.
  Constants can be divided into two major categories:

  1.    Primary Constants
  2.    Secondary Constants

 Data Types

  The kind of data that the used variables can hold in a programming language is known as the data type.

  Basic data types are as follows:

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 3 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  1.    Numeric Data Type
  2.    Non-Numeric Data Type
  3.    Integer Data Type
  4.    Real Data Type
  5.    Logical Data Type
  6.    Enumerated Data Type

1.    Numeric Data Type: Totally deals with the numbers. These numbers can be of integer (int) data type or real (float) data type.

  2.    Non-Numeric Data Type : Totally deals with characters. Any character or group of characters enclosed within quotes will be considered as
non-numeric or character data type.

  3. Integer Data Type :   Deals with integers or whole numbers. All arithmetic operations can be achieved through this data type and the results are again
integers.

  4.    Real Data Type :  deals with real numbers or the numeric data, which includes fractions. All arithmetic operations can be achieved through this data
type and the results can be real data type.

  5.    Logical or Boolean Data Type :  can hold only either of the two values TRUE or FALSE  at a time. In computer, a 1 (one) is stored for TRUE and a
0 (zero) is stored for FALSE.

  6. Enumerated Data Type :  Includes the unstructured data grouped together to lead to a new type. This data type is not standard and us usually defined
by user.
  Ex.
    Week_days = { œsun•, œmon•, œtue•, œwed•, œthu•, œfri•, œsat• };
    Directions = {•North•, œEast•, œWest•, œSouth• };

  The following table shows the standard data types with their properties.  
    

Keyword    

Range: low    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 4 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Range: high    

Digits of precision    

Bytes    of memory    

Format-ID    
    

vhar    

-128    

127    

n/a    

1    

%c    
    

int    

-32,    768    

32,    767    

N/a    

2 (on 16 bit processor)
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 5 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

%d    
    

long    

-2,147,    483, 648    

2,    147, 483, 647    

N/a    

4    

%ld    
    

float    

3.4 x    10-38    

3.4 x    1038    

7    

4    

%f    
    

double    

1.7 x    10-308    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 6 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

1.7 x    10308    

15    

8    

%lf    
    

long    double    

3.4 x    10-4932    

3.4 x    10-4932    

19    

10    

%Lf  

NOTE: The required ranges for signed and unsigned intare identical to those for signed and unsigned short. Oncompilers for 8 and 16 bit processors
(including Intel x86processors executing in 16 bit mode, such as under MS-DOS), anint is usually 16 bits and has exactly the same representation asa short.
On compilers for 32 bit and larger processors (includingIntel x86 processors executing in 32 bit mode, such as Win32 orLinux) an int is usually 32 bits long
and has exactly the samerepresentation as a long.

I want you to refer this page for more information on int type for different processors: 

 Ref: http://www.jk-technology.com/c/inttypes.html

02. Step-by-Step C/C++ --- IDE and Compilers for C/C++

C / C++ is a compiler based programming languages. In order to run a program you need a compiler software (i.e., GNU GCC, Tiny C, MS Visual C++,

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 7 of 276

http://www.jk-technology.com/c/inttypes.html


Learning C/C++ Step-By-Step http://www.howtoforge.com/

Cygwin C, Borland, Intel C etc..).  Also you need an IDE to create/edit programs (eg: Dev-C++, Code::Blocks, Eclipse, TurboC, etc..)

I am giving you a couple of examples of my favorite compiler and IDEs, You may choose the best from the vast list. 

 1. Installing GNU GCC Compiler

1.1. For Linux

1.2. For Mac OS X

1.3. For Windows (MinGW + DevCpp-IDE)

1.4. How to Create, Compile and Execute Programs

1.5. Example Programs
  

 1. Installing GNU GCC Compiler1.1.  For Linux

- For Redhat, get a gcc-c++ RPM, e.g. using Rpmfind and then install (as root) using 

rpm -ivh gcc-c++-version-release.arch.rpm

- For Fedora Core/ CentOS, install the GCC C++ compiler (as root) by using 

yum install gcc-c++

- For Mandrake, install the GCC C++ compiler (as root) by using 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 8 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

urpmi gcc-c++

- For Debian, install the GCC C++ compiler (as root) by using 

apt-get install g++

- For Ubuntu, install the GCC C++ compiler by using 

sudo apt-get install g++

- If you cannot become root, get the tarball from ftp://ftp.gnu.org/ and follow the instructions in it to compile and install in your home directory.

 1.2. For Mac OS X

  Xcode has GCC C++ compiler bundled.

   1.3. For Windows (MinGW + DevCpp-IDE)

- Go to http://www.bloodshed.net/devcpp.html, choose the version you want (eventually scrolling down), click on the appropriate download link! For the
most current version, you will be redirected to http://www.bloodshed.net/dev/devcpp.html
- Scroll down to read the license and then to the download links. Download a version with Mingw/GCC. It's much easier than to do this assembling
yourself. With a very short delay (only some days) you will always get the most current version of mingw packaged with the devcpp IDE. It's absolutely the
same as with manual download of the required modules.
- You get an executable that can be executed at user level under any WinNT version. If you want it to be setup for all users, however, you need admin
rights. It will install devcpp and mingw in folders of your wish.
- Start the IDE and experience your first project!

You will find something mostly similar to MSVC, including menu and button placement. Of course, many things are somewhat different if you were
familiar with the former, but it's as simple as a handfull of clicks to let your first program run.

   1.4. How to Create, Compile and Execute Programs

  If you are using Linux, create/edit a program:

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 9 of 276

ftp://ftp.gnu.org/
http://www.bloodshed.net/devcpp.html
http://www.bloodshed.net/dev/devcpp.html


Learning C/C++ Step-By-Step http://www.howtoforge.com/

vi hello.cpp

Compilation:  

g++ -Wall -g -o hello.out hello.cpp

Running a program:    

 ./hello.out

        

     1.5. Example Programs:C Example Program:

\* 0001_hello.c *\

#include <stdio.h>

int main()

{

      printf("\nHello world");

      return 0;

}

  C++ Example Program: 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 10 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

\* 0001_hello.cpp *\

#include <iostream>

using namespace std;

int main()

{

     cout << endl << "Hello, Happy programming";

     return 0;

}

03. Step-by-Step C/C++ --- C Programming - Basic IO StatementsContents
  
- Structure of a C program    
- I/O Statements    
- Printf    
- Escape Characters    
- Using Variables in programs    
- Scanf
  
- More IO Statements      
- gets    
- puts    
- getch    
- putch    
- getche    
- getchar  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 11 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

As discussed, every program is a set of statements, and statement is an instruction to the computer, which is a collection of constants, variables, operators
and statements.

 Structure of a C program

<return type> main( arg-list )

{

     <declaration part>

     <Statement block>

     <Return Values    >

}

We are going to start with Input / Output Statements as they play important roles in our further programs.

 I/O Statements

Printf

  This statement displays the given literal / prompt / identifiers on the screen with the given format.

  Syntax: 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 12 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

printf(<"prompt/literal/format id/esc char.     ">, id1,id2, .....);

E.g.:

        printf("Hello");

  printf("Student number   :  %d", sno);

  printf("Student name    :  %s", name);

printf("3Subjects Marks   :  %d, %d, %d", m1, m2, m3);

1. Program to print a message:

/* 02_print.c */

#include <stdio.h>

int main( )

{

     printf("Hello");

     return 0;

}

 Escape Characters

Common Escape Sequences    
    

Escape Sequence    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 13 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Character    
    

a    

Bell(beep)    
    

b    

Backspace    
    

f    

Form feed    
    

n    

New line    
    

r    

Return    
    

t    

Tab    
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 14 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

\    

Backslash    
    

(TM)    

Single quotation mark    
    

•    

Double quotation marks    
    

xdd    

Hexadecimal    representation  

2. Program to print a message in a new line
-    Compare with the last program.

/* 03_esc.c */

#include <stdio.h>

int main()

{

     printf("\nHello");

     return 0;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 15 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

  

3. Program to display address of a person
  - Multiple statements in main

/* 04_multi.c */

#include <stdio.h>

int main()

{

     printf("\nName of the Person");

     printf("\nStreet, Apartment//House No. ");

     printf("\nzip, City");

     printf("\nCountry");

     return 0;

}

 Using Variables in  programs

Basic Variable Types   
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 16 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Keyword    

Range: low    

Range: high    

Digits of precision    

Bytes    of memory    

Format-ID    
    

Char    

-128    

127    

n/a    

1    

%c    
    

Int    

-32,    768    

32,    767    

N/a    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 17 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

2    

%d    
    

Long    

-2,147,    483, 648    

2,    147, 483, 647    

N/a    

4    

%ld    
    

Float    

3.4 x    10-38    

3.4 x    1038    

7    

4    

%f    
    

Double    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 18 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

1.7 x    10-308    

1.7 x    10308    

15    

8    

%lf    
    

long    double    

3.4 x    10-4932    

3.4 x    10-4932    

19    

10    

%Lf  

 4.    Program to find the sum of two values 
-    Variables are introduced in this program

/* 05_var.c */

#include <stdio.h>

int main()

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 19 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     int a , b , c;

     a = 5;

     b = 10;

     c = a + b;

     printf("%d", c);

     return 0;

}

5. Program to find the sum of two values with message
  -    Compare with the last program

#include <stdio.h>

int main()

{

     int a, b, c;

     a = 5;

     b = 10;

     c = a + b;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 20 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("\nSum is   %d", c);

     /* We have inserted extra text before printing the value*/

     return 0;

}

 

Scanf

  Using this statement we can accept and values to variables during the execution of the program.  

  Syntax:

  scanf(<format id/esc char">, id1,id2, .....); 

Eg. 

  scanf("%d", &sno);

  scanf("%s", name);

  scanf("%d%d%d", &m1, &m2, &m3);

6.    Program to find the sum of two value using scanf
  -    When you run the program it shows you the cursor and waits for your input, enter a numeric value and press "Return", do this twice and you will get
the output.

/* 07_scanf.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 21 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

     int a , b, c;      scanf("%d", &a);

     scanf("%d", &b);

     c = a + b;

     printf("\nSum is   %d", c);

     return 0;

}

More Excercises:

7.    Program to find the sum of two values with message display
  -    Messages are optional but introduces user-friendly interaction
-    Compare with the last program

/* 08_sum.c */

#include <stdio.h>

int main()

{

     int a , b, c;      printf("Enter A value ");  scanf("%d", &a);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 22 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("Enter B value ");  scanf("%d", &b);

     c = a + b;

     printf("\nSum is   %d", c);

     return 0;

}

  

8. Program to find the result of ( a+ b )2
  -    Similar to sum of two values program but the formulae is different  

/* 09_formula.c */

#include <stdio.h>

int main()

{

     int a, b, c;

     printf("Enter A value "); scanf("%d", &a);

     printf("Enter B value "); scanf("%d", &b);

     c = a * a + b * b + 2 * a * b;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 23 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("Result is       %d", c);

     return 0;

}

9.    Program to find the annual salary of an employee
  -    input : eno, name, sal
  -    Process : Asal = sal * 12
  -    Output :  Eno, name, sal, asal
  -    This program introduces the different types of variable

/* 10_emp.c */

#include <stdio.h>

int main()

{

     int eno;

     char name[10];                    /*  name with 10 characters width */

     float sal, asal;                        /* sal & asal as real values */

     printf("Enter Employee number  "); scanf("%d", &eno);

     printf("Enter Employee name     "); scanf("%s", name);

     printf("Enter Employee salary    "); scanf("%f", &sal);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 24 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     asal = sal * 12;

     printf("\nEmployee number      %d", eno);

     printf("\nEmployee name         %s", name);

     printf("\nEmployee salary        %f", sal);

     printf("\nAnnual Salary            %f", asal);

     return 0;

}

  

10.    Write a program to find the total and average marks of a student
  -    Input : Sno, name, sub1, sub2, sub3
  -    process : total = sub1 + sub2 + sub3;    avg = total / 3
  -    output :  sno, name, total, avg
  -    Similar to the above program just accept, process, and print the values

/* 11_stud.c */

#include <stdio.h>

int main()

{

     int sno, sub1, sub2, sub3, total;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 25 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     char name[10];

     float avg;

     clrscr();                /* clear the screen before its output  */

     printf("Enter Student number      "); scanf("%d", &sno);

     printf("Enter Student name    "); scanf("%s", name);

     printf("Enter Subject1 marks    "); scanf("%d", &sub1);

     printf("Enter Subject2 marks    "); scanf("%d", &sub2);

     printf("Enter Subject3 marks    "); scanf("%d", &sub3);

     total = sub1 + sub2 + sub3;

     avtg = total / 3;

     printf("\nStudent number    %d", sno);

     printf("\nStudent name    %s", name);

     printf("\nTotal marks        %d", total);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 26 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("\nAverage marks    %f" , avg);

     return 0;

}

 More IO Statements

Gets:

 To accept a string from the key board. It accepts string value up to the carriage return.

 Syntax: 

  gets( <id.> );

  E.g.:

  gets(name);

gets(street);

 

 puts

 It displays the given string value on the screen.

 Syntax: 

  puts( <id.> / <œprompt•>);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 27 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  E.g.:

  puts(name);

  puts(street);

  

 getch - Read char without echo

 getche - read  char with echo

 getchar - read char and accept carriage return

 

 putch

  It can print a character on the screen.

  Syntax:

  putch(<char>).

  E.g.:

  putch(˜a(TM));

putch(65);

 

 getch

  It accepts a character from console.

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 28 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  Syntax: 

  char = getch().

  E.g.:

  ch = getch();

option = getch();

04. Step-by-Step C/C++ --- C Programming - Conditional Statements 
   
-  Introduction to Conditional Statements:  
- if..else  
- switch

 1. Introduction to Conditional Statements:

A computer is an electronic device which can perform arithmetic operations as well logical decisions.

At this point, computer is far away from an ordinary calculator which able to perform only arithmetic operations.

We can ask the biggest value from the given two values using conditional statements like if-else, switch.

 2. if..else 

  It is a conditional statement to find the variance between two expressions. 
 
Syntax:
  

if ( <condition> )

     {	<St.block>;	}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 29 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

else

     {	<St block>; 	}

  

Every if has a condition and two statement blocks. If the condition is true it executes the first st.block and vice versa. 
 Eg.
  

If( a>b )

     printf(â€œA is bigâ€•);

else

     printf(â€œB is bigâ€•);

    

Note: No need of block for Single statements.

1. Program to find the biggest of 2 values 

/* 12_if.c */

#include <stdio.h>

int main()

{							     /* Begin */

     int a, b;   					     /* Declaration of Variables */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 30 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("\nEnter A value : "); scanf("%d", &a);      /* Read value A */

     printf("\nEnter B value : "); scanf("%d", &b);       /* Read value B */      

     if( a>b ) 					     /* Compare both */

          printf("A is big");

     else

          printf("B is big");			     /* Print the result */

      return 0;

}      /* End */

This is a list of operators in the C++ and C programming languages. All the operators listed exist in C++ 

Ref:  http://en.wikipedia.org/wiki/Operators_in_C_and_C++

 Arithmetic Operators
	Operator	    		Purpose	    	
	+	Addition
	-	Subtraction
	*	Multiplication
	/	Division
	%	Remainder after integer division (modulus)

 Unary Operators
	 Operator	 Purpose
	-	Minus (negative number)
	++	Increment (increase by 1)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 31 of 276

http://en.wikipedia.org/wiki/Operator_%28programming%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B


Learning C/C++ Step-By-Step http://www.howtoforge.com/

	--	Decrement (decrease by 1)
	sizeof	Size, in bytes
	(type)	Cast

   Relational Operators
	Operator	Purpose
	<	Less Than
	<=	Less Than Or Equal To
	>	Greater Than
	>=	Greater Than Or Equal To

   Equality Operators
	Operator	Purpose
	==	Equal To
	!=	Not Equal To

   Logical Operators
	Operator	Purpose
	&&	AND
	||	OR
	!	NOT

   Bit-Manipulating Operators
	Operator	Purpose
	&	AND
	|	OR
	~	NOT
	^	XOR
	<<	Shift Left
	>>	Shift Right

   Operator Precedence Groups
	Operator Category	Operators	Associativity

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 32 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

	unary operators	-  ++  --  !  sizeof  (type)	R to L
	arithmetic multiply, divide and remainder	*  /  %	L to R
	arithmetic add and subtract	+  -	L to R
	relational operators	<  <=  >  >=	L to R
	equality operators	==  !=	L to R
	logical operators	&&  ||	L to R
	conditional operators	?  :	R to L
	assignment operators	=  +=  -=  *=  /=  %=	R to L

 More Excercises 

The reason behind more exercises is to get acquainted with the learned statements, if you are confident you don(TM)t have to run the following programs.

/* 01. Program to find the age of a person from the following details */
  /* 	age <= 12    			Child Age
     age >= 13 and age <= 19   	Teen Age
     age >= 20 and age <= 35	Young Age
     age >= 36 and age < 50	Middle Age
     age >= 50                       	Old Age
*/

/* 13_age.c */

#include <stdio.h>

int main()

{

     char name[20];

     int age;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 33 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     clrscr();

     print "Enter U'r name  ";  input name;

     print "Enter U'r age   ";  input age;

      printf("\n%s U are in     ");

      if ( age <= 12 )                	printf("Child Age");

       if ( age >= 13 and age <= 19 ) 	printf("Teen Age");

      if ( age >= 20 and age <= 35 )	printf("Young Age");

       if ( age >= 36 and age <  50 )	printf("Middle Age");

      if ( age >= 50 )			printf("Old Age");

      return 0;

}

  

/* 02. Program to find the biggest of 3 Values  */  

/* 14_big3.c */

#include <stdio.h>

#include <conio.h>

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 34 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int a, b, c;

     clrscr();

     printf("Enter A value   "); scanf("%d", &a);

     printf("Enter B value   "); scanf("%d", &b);

     printf("Enter C value   "); scanf("%d", &c);

     if( a > b && a > c ) printf( "A is big " );

     if( b > a && b > c ) printf( "B is big " );

     if( c > a && c > b ) printf( "C is big " );

     return 0;

}

/* 03. Program to find the biggest of 3 Values   using if..else  */

/* 15_big3.c */

#include <stdio.h>

#include <conio.h>

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 35 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int a, b, c;

     clrscr();

     printf("Enter A value   "); scanf("%d", &a);

     printf("Enter B value   "); scanf("%d", &b);

     printf("Enter C value   "); scanf("%d", &c);

     if( a > b && a > c )

          printf( "A is big " );

     else

          if ( b > c )

               printf( "B is big " );

          else

               printf( "C is big " );

     return 0;

}

  

/* 04. Program to find the biggest of 3 Values using nested if */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 36 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 16_big3.c */

#include <stdio.h>

#include <conio.h>

int main()

{

     int a, b, c;

     clrscr();

     printf("Enter A value   "); scanf("%d", &a);

     printf("Enter B value   "); scanf("%d", &b);

     printf("Enter C value   "); scanf("%d", &c);

     if( a > b )

          if( a > c )

               printf(" A is big ");

          else

               printf(" C is big ");

     else

          if( b > c )

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 37 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

               printf(" B is big ");

          else

               printf(" C is big	");

     return 0;

}

      

/* 05. To find the week day of the given number  */

/* 17_week.c */

#include <stdio.h>

int main()

{

     int week;

     printf("Enter week number  "); scanf("%d", &week);

     if (week == 1  )  printf ("Sunday");

     if (week == 2  )  printf ("Monday");

     if (week == 3  ) printf ("Tuesday");

     if (week == 4  ) printf ("Wednesday");

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 38 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     if (week == 5  )  printf ("Thursday");

     if (week == 6  ) printf ("Friday");

     if (week == 7  ) printf ("Saturday");

     if ( week < 1 || week > 7 ) printf("Bad Day");

     return 0;

}

 3. Switch

A multi-conditional st. has the ability to check the variance of more than one expression. 

  Syntax: 
 

switch(<id>)

{

     case <expr.> : <st. block>; break;

     case <expr.> : <st. block>; break;

     ......

     Default : <st. block>;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 39 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

Eg. 
 

switch(week)

{

     case 1 : printf( â€œSun Dayâ€•); break;

     case 2 : printf(â€œMon Dayâ€•); break;

     .

     .

     case 7: printf(â€œSatur Dayâ€•); break;

     default : printf(â€œWrong Entryâ€•);

}

	

/* 06. To find the week day of the given number using switch statement  */  

/* 18_switch.c */

#include <stdio.h>

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 40 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int week;

     printf("Enter week number  "); scanf("%d", &week);

     switch(week)

     {

          case 1 : printf ("Sunday"); break;

          case 2 : printf ("Monday"); break;

          case 3 : printf ("Tuesday"); break;

          case 4 : printf ("Wednesday"); break;

          case 5 : printf ("Thursday"); break;

          case 6 : printf ("Friday"); break;

          case 7 : printf ("Saturday"); break;

          default : printf("Wrong Entry");

     }

     return 0;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 41 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

05. Step-by-Step C/C++ --- C Programming - Looping Statements
- 	Branching Statement - goto
- Looping Statements
for
while
do..while

 1. Branching Statement

  goto

It transfers the control pointer from one place to another in the current program.  
   Syntax:
  

goto <label>;

    

Note: Label name must be defined with colon(:) and it should not exceed more than 32 characters in length.   
   Eg.
  

abc:

     printf(â€œHelloâ€•);

     goto abc;

/* 01. A demonstration program to illustrate goto statement */

/* 19_goto.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 42 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

     abc:								/* Label name */

          printf("\nHello");

     goto abc;					/* branching statement */

     return 0;

}

/* 07. Continuous execution will be stopped with a carry varaible and a conditional statement  */
  /* Find the difference between the last program and this, note all the differences in this program*/

/* 20_goto.c */

#include <stdio.h>

int main()

{

     int i = 1;

     abc:

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 43 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          printf("\nHello");

          i ++;

          if ( i<= 10 )			/* Take care of this statement */

     goto abc;

     return 0;

}

 2. Looping Statements

for

  An iterative statement to execute a statement block for a number of times. 
   Syntax:
  

for(<initialization> ; <condition> ; <step value>)

{

     <st. block>

}

     
 Eg.

for(I=1;I<=10; I++)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 44 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf(â€œ\n%dâ€•,i);

     
 Eg.

for(I=1, j = 0; I<10; I+=2, j+=2)

     printf(â€œ%d      %d\nâ€•, i, j);

          

/* 08. To print a message 5 times */

/* 21_for.c */

#include <stdio.h>

int main()

{

     int i;

     for(i = 1; i <= 5; i++ )

          printf("\nHello");

     return 0;

}

  

/* 09. To print a message with it's count upto 5 times */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 45 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 22_hello.c */

#include <stdio.h>

int main()

{

     int i;

     for(i = 1; i <= 5; i++ )

          printf("\nHello - %d", i);

     return 0;

}

/* 10. To print 1 to 10 natural numbers  */

/* 23_nat.c */

#include <stdio.h>

int main()

{

     int i;

     for(i = 1; i <= 10; i++ )

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 46 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          printf("\n%d", i);		/* Eleminating message */

     return 0;

}

/* 11. To print second multiplication table */
  /* Note : Compare it, with the last program */

/* 24_table.c */

#include <stdio.h>

int main()

{

     int i;

     for(i = 1; i <= 20; i++ )

          printf("\n%d * 2 = %d", i, i * 2);

     return 0;

}

/* 12. To print a multiplication table for the given number  */

/* 25_tablen.c */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 47 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

#include <stdio.h>

#include <conio.h>

int main()

{

     int i, t;              				/*  a new variable 't'  */

     clrscr();

     printf("Which table to print   :"); scanf("%d", &t);

     for(i = 1; i <= 20; i++ )

          printf("\n%d * %d = %d", i, t, i * t);

     return 0;

}

/* 13. To print a multiplication table for the given number  */
  /* Note : Compare it, with the last program */

/* 26_tablen.c */

#include <stdio.h>

int main()

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 48 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     int i, t;

     clrscr();

     for(t = 1; t <= 20; t++)				/* One more for loop  */

          for(i = 1; i <= 20; i++ )

               printf("\n%d * %d = %d", i, t, i * t);

     return 0;

}

/* 14. To print numbers in triangle form */
  /* Note : Compare it, with the last program */

/* 27_tri.c */

#include <stdio.h>

int main()

{

     int i, j;

     clrscr();

     for( i = 1 ; i<= 5; i++ )

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 49 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     {

          for( j = 1; j <= 5; j++ )

               printf("%4d", j);

          printf("\n");

     }

     return 0;

}

Few more examples of for loops: 
 /* Infinite Loop */
for ( ; ; )
{
     printf("nHello"); 
}/* Print 1-5 numbers */
  for ( i=1; i<=5; )
  {
     printf("n%d", i++); 
} 
 /* Explicit Loop break*/
   for ( i=1; ;  )
   {
     printf("n%d", i++); 
     if ( i> 5 ) break;
} int i = 1;
  for ( ;i<=5 ;  )
  {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 50 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     printf("n%d", i++); 
}

while

An iterative statement to execute a statement block until the given condition is satisfied.

do.. while

  This iterative statement executes statement block at the begin and then it checks the condition validity. If the condition is true it executes the statement
block again and vice versa. 
   Syntax:
  

while( < condition > )

{

      <st. block>;

}

Syntax:

do

{

      <st. block>

} while(<condition>);

Eg.
The following example displays natural numbers from 1 to 10.
 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 51 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

      int i=1;

      while( i<=10)

      {

            printf(â€œ\n%dâ€•,i);

            i++;

      }

      return 0;

}

      

int main()

{

      int i=1;

      do

      {

            printf(â€œ\n%dâ€•,i);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 52 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            i++;

      }while(i<=10);

      return 0;

}

    
      It checks the condition first and executes the block next , So you should have an initial value for the condition    It executes the block first and checks
the condition next , You can determine the initial value in the st.block.    More Examples 
 

/* 15. To print 1 to 5 numbers  */
  /* Note : It's a reference program  */  

/* 28_while.c */

#include <stdio.h>

int main()

{

     int i;

     i = 1;   /*  Initial value is 1 */

     while( i<= 10 )

     	/* True i is less than or equal to 10 at first */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 53 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     {

          printf("\n%d", i);

          i ++;

     }

     return 0;

}

/* 16. To print 1 to 5 numbers  */
  

/* 29_dowhile.c */

#include <stdio.h>

int main()

{

     int i;

     i = 1;   /*  Initial value is 1 */

     do

     {

          printf("\n%d", i);

          i ++;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 54 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     }while( i<=10 );

     /* True, i is less than or equal to 10 at Second */

     return 0;

}

 

/* 17. Demonstration of while */
  /* Note : If the initial value is 100 what was the output?, Check it. */  

/* 30_demow.c */

#include <stdio.h>

int main()

{

     int i;

     i = 1;

     while( i<= 10 )

     {

          printf("\n%d", i);

          i++;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 55 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     }

     return 0;

}

/* 18. Demonstration of do */
  /* Note : If the initial value is 100 what was the output?, Check it. */
  

/* 31_demod.c */

#include <stdio.h>

int main()

{

     int i;

     i = 1;

     do

     {

          printf("\n%d", i);

          i++;

     }while( i<= 10 );

     return 0;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 56 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

06. Step-by-Step C/C++ --- C Programming - FunctionsFunctions 	
		 		I.	Introduction 		
	   	  II.	Function definition  	
	   	  III.	Types of functions  	
	   	  IV.	Built-in functions  	
	   	       1.	Numeric functions
	         2.	String functions
           3.	Character Test Functions  	
	   	  V.  User-Defined functions  	
	   	       1.	Simple Functions
	         2.	Function with Arguments
	         3.	Function with Returns
           4.	Function with Recursion  	
	   	  VI. Pointers and Functions  	
	   	        1.	Parameter Passing by Reference
	         2.	Call by value
           3.	Call by Reference  	
	   	  VII. Local Vs Global  	
	   	  VIII. Storage Class Specifiers  	
	   	       	Automatic Storage Class
	         	Register Storage Class
	         	Static Storage Class
           	External Storage Class    

 I. Introduction

Here is a program to print the address of a person twice, which is written in both methods using functions and without using functions. It will demonstrate
the advantage of functions. 
 	

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 57 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

#include <stdio.h>

int main()

{

     printf("\nName of the Person");

     printf("\nStreet, Apartment//House No. ");

     printf("\nzip, City");

     printf("\nCountry");

     printf("\nName of the Person");

     printf("\nStreet, Apartment//House No. ");

     printf("\nzip, City");

     printf("\nCountry");

     return 0;

}

 

#include <stdio.h>

void address()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 58 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     printf("\nName of the Person");

     printf("\nStreet, Apartment//House No. ");

     printf("\nzip, City");

     printf("\nCountry");

}

int main()

{

     address();

     address();

     return 0;

}

 II. Function Definition

A statement block, which has ability to accept values as arguments and return results to the calling program. So,  A function is a self-contained block of
statements that perform a specific task.

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 59 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

III. Types of functions 
 

-	Built-in functions/ Library Functions/ Pre-Defined functions
  -	User defined functions

 IV. Library Functions

Library functions are designed by the manufacturer of the software, They were loaded in to the disk whenever the software is loaded.

The following functions are the example of the library functions.

1. Numeric Functions  
    Function    Syntax    Eg.    Result    
    Abs    Abs(n)    abs(-35)    35    
    ceil    ceil(n)    ceil(45.232)    46    
    floor    floor(n)    floor(45.232)    45    
    fmod    fmod(n,m)    fmod(5,2)    1    
    cos    cos(n)    cos(60)    0.5    
    sin    sin(n)    sin(60)     0.866    
    tan    tan(n)    tan(60)    1.732    
    sqrt    sqrt(n)    sqrt(25)    5    
    pow    pow(n,m)    pow(2,3)    8   

2. String Functions        
    Functions       Syntax    Eg.    
    strlen      strlen(str)    strlen(œComputer•)    
    strcpy      strcpy(target,source)    strcpy(res,•Pass•)    
    strcat       strcat(target,source)    strcat(œmag•,•gic•)    
    strcmp     strcmp(str1,str2)     strcmp(œabc•,•Abc•)    
    strrev       strrev(target,scr)    fstrrev(res,•LIRIL•)   

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 60 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

3. Character Test Functions      
    Function    Description    
    isalnum    is a letter or digit    
    isalpha    is a letter    
    isdigit    is a digit    
    iscntrl    is an ordinary control character    
    isascii    is a valid ASCII character    
    islower    is a lower character    
    isupper    is a upper character    
    isspace    is a space character    
    isxdigit    is hexa decimal character   

 There is a huge library of functions available, I have given you a tiny portion of it. For more Library Fuctions refer the Help Manual. 

 V. User-Defined Functions

The programs you have already seen perform divisions of labor. When you call gets, puts, or strcmp, you don(TM)t have to worry about how the innards of
these functions work. 

These and about 400 other functions are already defined and compiled for you in the Turbo C library. To use them, you need only include the appropriate
header file in your program, œThe run-time library,• in the library reference to make sure you understand how to call the functions, and what value (if any)
it returns.

But you(TM)ll need to write your own functions. To do so, you need to break your code into discrete sections (functions) that each perform a single,
understandable task for your functions, you can call them throughout your program in the same way that you call C library functions.

Steps to implement a function 
 

1. Declaration

2. Function Call

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 61 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

3. Definition

 
 ¢	Every function must be declared at the beginning of the program.
¢	Function definition contains the actual code of execution task.
¢	If a function is defined at the beginning of the program, there is no need of function declaration.
An example function to demonstrate the implementation

 
 

/* 32_egfun.c */

#include <stdio.h>

void address();

     

/* Declaration */

 
  
int main()
    {
         address();       /* Function Call */ 
         address();      /* Function Call */
    
	     return 0;
    }

	  void address()       /* Definition */ 
  {
       printf("nName of the Person");

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 62 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

       printf("nStreet, Apartment//House No. ");
       printf("nzip, City");
       printf("nCountry");
  }
  		

User defined functions  can be divided in to 4 types based on how we are calling them. 
   1.	Simple Functions
2.	Function with Arguments
3.	Function with Returns
4.	Function with Recursion

  1. Simple Functions

     Performs a specific task only, no need of arguments as well as return values

  Example of Simple Function     
 

/* 33_line.c */

#include <stdio.h>

void line();			    

 

/* Declaration */

  int main()
  {
     line();			     /* Function call */
     return 0;
}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 63 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

void line()			     /* Definition */
{
     int i;
     for(i =1;i<80; i++)
          putch(˜*(TM));
}

  2. Function with Arguments

     A function, which accepts arguments, is known as function with arguments. 

  Eg. 
 

/* 34_argu.c */

void line(char ch, int n)

int main()

{

     line("-", 50);

     line("*", 8);

     return 0;

}

void line(char ch, int n)

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 64 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     int i;

     for( i = 1; i<=n; i++ )

          putch(ch);

}

  3. Function with Return values

     A function which can return values to the calling program is known as function with return values.

  Eg. 
 

/* 35_retu.c */

int abs(int n);

int main()

{

     int res;

     printf(â€œ%dâ€•, abs(-35))

     res = abs(-34);     

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 65 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* Function Call*/

     printf(œ%d•, res); 
     return 0;
} 
void abs(int n)
{
     if( n < 0 )
     n = n * -1;
     return n;
}

4. Function with Recursion

If a statement within the body of a function call the same function is called ˜recursion(TM) . Sometimes called ˜circular definition(TM), recursion is thus
the process of defining something in terms of itself.Examples of Recursive of functions 
 /* The following program demonstrates function call of itself */

int main( )

{

     printf(â€œ\nHelloâ€•);

     main( );			/* A function, which can call it self */

     return 0;

}

Don(TM)t run this program, it is still an explanation thus program is not valid logically.

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 66 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

The same output can be reached using another function:

void disp( );

int main( )

{

     disp( );

     return 0;

}

void disp( )

{

     printf(â€œ\nHelloâ€•);

     disp( );

}

The program must end at a certain point so the key of the recursion lies on soft interrupt, which can be defined using a conditional statement.
Check the following example:    
 

/* 36_recursion.c  */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 67 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int i = 1;       /* Declaring a global variable */

void disp( );

int main( )

{

     disp( );

     return 0;

}

void disp( )

{

     printf(â€œ\nHello  %d â€•, i);

     i ++;

     if( i < 10 ) 	/* if i value is less than 10 then call the function again */

          disp( );

}

 
  Program to find the factorial of the given number:

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 68 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 37_fact.c */

int factorial(int x);

void main

{

     int a, fact;

     printf("\nEnter any number   ");   scanf("%d", &a);

     fact = factorial(a);

     printf("\nFactorial is    = %d", fact);

}

int factorial(int x)

{

     int f = 1, i;

     for( i = x; i>=1; i--)

     f = f * i;

     return f;

}

To find the factorial of a given number using recursion

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 69 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 38_fact.c */

int rec_fact(int x);

int main( )

{

     int a, fact;

     printf("\nEnter any number  "); canf("%d", &a);

     fact = rec_fact(a);

     printf("\nFactorial value is = %d", fact);

     return 0;

}

int f = 1;

int rec_fact(int x)

{

     if( x > 1)

          f = x * rec_fact(x-1);

     return f;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 70 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 VI. Pointers and Functions 
 	Parameter Passing by Reference
  	Call by value
  	Call by Reference

1. Parameter Passing by Reference

The pointer ca n be used in function declaration and this makes a complex function to be easily represented as well as accessed. The function definition
makes use of pointers in it, in two ways  
 - Call by value 
  - Call by reference

  The call by reference mechanism is fast compared to call by value mechanism because in call by reference, the address is passed and the manipulation
with the addresses is faster than the ordinary variables. More ever, only one memory location is created for each of the actual parameter.

  When a portion of the program, the actual arguments, calls a function and the values altered within the function will be returned to the calling portion of
the program in the altered form. This is termed as call by reference or call by address. The use of pointer as a function argument in this mechanism enables
the data objects to be altered globally ie within the function as well as within the calling portion of the program. When a pointer is passed to the function,
the address of the argument is passed to the functions and the contents of this address are accessed globally. The changes made to the formal parameters
(parameters used in function) affect the original value of the actual parameters (parameters used in function call in the calling program).

Eg. 
 

/* 39_func.c */

void func_c( int *x );

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 71 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int i = 100;

     int *a;

     a = &i;

     printf("\nThe value is %d", i);

     func_c(a);

     printf("\nThe value is %d", i);

     return 0;

}

void func_c( int *x )

{

     (*x) ++;

     printf("\nThe value in function is %d ", *x);

}

In the above program, these are totally three ˜printf(TM) statements, tow in the main() function and one in the function subprogram. Due the effect of first
printf statement the value of i is printed as 100. Later function call is made and inside function, the value is altered in and is 1001 due to increment. The
altered value is again returned to main() and is printed as 1001. 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 72 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Hence the output is: 
 The value is 100
  The value in function is 101
  The value is 101

  More about Function Calls

  Having had the first tryst with pointers let us now get back to what we had originally set out to learn - the two types of functions calls: call by value and
call by reference. Arguments can generally be passed to function in one of the two ways: 
 a.	Sending the values of the arguments 
  b.	Sending the addresses of the arguments 

2. Call by Value 

In the first method the ˜value(TM) of each of the actual arguments in the calling function is copied into corresponding formal arguments of the called
function. With this method the changes made to the formal arguments in the called function have no effect on the values of actual arguments in the calling
function. The following programming illustrated the Call by Value.  
 

/* 40_callbyvalue.c */

void swap( int x, int y )

int main( )

{

     int a = 10, b = 20;

     swap( a ,b );

     printf("\n a = %d, b = %d ", a, b);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 73 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

void swap( int x, int y )

{

     int t;

     t = x;

     x = y;

     y = t;

     printf("\nx = %d, y = %d", x, y);

}

The output of the above program would be: 
 X = 20 y = 10
  A = 10 b = 20

Note that value of a and b remain unchanged after exchanging the value of x and y.

3. Call by Reference

  This time the addresses of actual arguments in the calling function are copied into formal arguments of the called function. This means that using these
addresses we would have an access to the actual arguments and hence we would be able to manipulate them. The following program illustrates this fact. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 74 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

* 41_callbyref.c */

void swap( int *x, int *y )

int main()

{

     int a = 10, b = 20;

     swap( &a, &b);

     printf("\na = %d, b = %d", a, b);

     return 0;

}

void swap( int *x, int *y )

{

     int t;

     t = *x;     *x = *y;   *y = t;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 75 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

The output of the above program would be: 
 A = 20, b = 10Note that this program manages to exchange the values of a and b using their addresses stored in x and y.  Usually in C programming we
make a call by value. I.e. in general you cannot alter the actual arguments. But if desired, it can always be achieved through a call by reference.
Using call by Reference intelligently we can make a function, which can return more than one value at a time, which is not possible ordinarily. This is
shown in the program given below.
 
 

/* 42_callbyref.c */

void areaperi(int r, float *a, float *p)

int main()

{

     int radius;

     float area, perimeter;

     printf("\nEnter radius of a circle :"); scanf("%d", &radius);

     areaperi(radius, &area, &perimeter);

     printf("\nArea = %f ", area);

     printf("\nPerimeter = %f", perimeter);

     return 0;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 76 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

void areaperi(int r, float *a, float *p)

{

     *a = 3.14 * r * r;

     *p = 2 * 3.14 * r;

}

And here is the output: 
 Enter radius of a circle 5
  Are = 78.500000
  Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the value of radius but, address of area and perimeter. And since we are passing the
addresses, any change that make in values stored at address contained in the variables a and p, would make the change effective in main. That is why when
the control returns from the function areaperi( ) we are able to output the values of area and perimeter.
  Thus, we have been able to return two values from a called function, and hence, have overcome the limitation of the return statement, which can return
only one value from a function at a time.

 VII. Local Vs Global Variables

According to the Scope of Identifiers Variables are declared as of types.   
 

/* 42_globalid.c */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 77 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int i=4000;

/* Global variable declaration*/

int main()
{
     int a=10, b=20;  			/* Local Variable */
     int i=100;				/* Local Variable */
     printf(œ%d   %d•, a, b);
     printf(œnLocal i  : %d•, i);		/* Accessing Local variable */
     printf(œnGlobal i : %d œ, ::i);		/* Accessing Global variable */
     return 0;
}

Note: Scope Resolution ( :: ) Operator can be available in C++ only.

 VIII. Storage Class Specifiers

Until this point of view we are already familiar with the declaration of variables. To fully define a variable one needs to mention not only its ˜type(TM) but
also its ˜Storage Class(TM). 
  According to this section variables are not only have a ˜data type(TM), they also have a ˜Storage Class(TM).

Storage Classes are of 4 Types 
 1.	Automatic Storage Class
  2.   Register Storage Class
  3.   Static Storage Class
  4.	External Storage Class

  1.	Automatic Storage Class      
     Keyword     auto    
     Storage     Memory    
     Default Value     Null    
     Scope     Local to the block in    which  the variable defined    
     Life     Until the execution of    its block   

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 78 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Eg: 
 

/* 43_auto.c */

#include <stdio.h>

int main()

{

     auto int i, j;

     printf(â€œ%d  %dâ€•, i, u);

     return 0;

}

 

2.	Register Storage Class      
     Keyword     register    
     Storage     CPU Registers    
     Default Value     Null    
     Scope     Local to the block in    which the variable defined    
     Life     Until the execution of    its block   

Eg: 
 

/* 44_register.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 79 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main( )

{

     register int i, j;

     for(i=1;i<=10;i++)

          printf(â€œ\n%dâ€•, i);

     return 0;

}

3. Static Storage Class      
     Keyword     static    
     Storage     Memory    
     Default Value     Zero    
     Scope     Local to the block in    which   the variable defined    
     Life     Value of the variable    persists between different function calls   

Eg: 
 

/* 45_static.c */

#include <stdio.h>

void add();

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 80 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     add();

     add();

     add();

     return 0;

}

void add()

{

     static int i = 1;

     printf(â€œ%d\nâ€•,i++);

}

4. External Storage Class      
     Keyword     extern    
     Storage     Memory    
     Default Value     Zero    
     Scope     Global    
     Life     As long as the    program(TM)s execution doesn(TM)t come to an end   

Eg: 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 81 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 46_extern.c */

#include <stdio.h>

int i;

void add();					/* Extern variable */

int main( )

{

     extern j=10;				 /* Extern variable */

     for(i=1;i<=10;i++)

          add();

     return 0;

}

void add( )

{

     j++;

     printf(â€œ%d   %d\nâ€•, i, j);

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 82 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

07. Step-by-Step C/C++ --- C Programming - Arrays  
 1.	Introduction to arrays  
         2.	About Arrays    
         3.	Array Elements    
         4.	Passing Arrays to Functions    
         5.	Types of Arrays		 
 		  

- Single Dimensional Arrays		  

          1.	Append element
		              2.	Insert element
		              3.	Delete element
		              4.	Replace element
		              5.	Search element
		              6.	Deletion of array
		              7.	Sorting of an array		  

- Multi Dimensional Arrays
		  	           Matrix Operations using Multi Dimensional Arrays			  

 1. Introduction to arrays

A variable can hold a constant value. Only a single constant value and it is not possible to hold more than one value in a variable.

The following example demonstrates the scope a variable. 
 

int main()

{

     int sno;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 83 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     sno = 1001;

     sno = 1008;

     sno = 1005;

     printf(â€œ%dâ€•, sno);

     return 0;

}

  
         Output:
    1005  

The above program is able to display only 1005, but not all the values (i,e. 1001, 1008, 1005 ).

Can we substitute the following program in place of the above program. 
 

int main()

{

     int sno;

     sno 0 = 1001;

     sno 1 = 1008;

     sno 2 = 1005;

       printf(â€œ%dâ€•, sno);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 84 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

  
         Output:
      Nothing, 
    The above program displays a list of errors, because of the approach is wrong.  

Let(TM)s continue with the following program to get 0 errors program.  
 

int main()

{

     int sno[3];

     sno[0] = 1001;

     sno[1] = 1008;

     sno[2] = 1005;

     printf(â€œ%dâ€•, sno[2] );

     return 0;

}

 /* 3 values to be insert */
  /* First location to insert 1001 */
  /* Next location to insert 1008 */
  /* and Next location to insert 1005 */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 85 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  /* Prints the value of 2nd location  */  
  
 Output:
      Nothing      

The above program displays a list of errors, because of the approach is wrong.

Depending on the above program, the variable sno can 	hold more than one student number. It(TM)s easy, by using multi-location technique, is also known
as arrays.

 2. About Arrays

Arrays contain a number of data items of the same type. This type can be a simple data type, a structure, or a class. The items in an array are called
elements. Number accesses elements; this number is called an index. Elements can be initialized to specific values when the array is defined. 

Arrays can have multiple dimensions. 

A two-dimensional array is an array of array. The address of an array can be used as an argument to a function; the array itself is not copied. Arrays can be
used as member data in classes. Care must be taken to prevent data from being placed in memory outside an array.

/* The following program reads 4 persons age and displays it */ 
 

/* 47_arrays.c */

#include <stdio.h>

int main()

{

     int age[4], i;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 86 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     for( i=0; i<4; i++)

     {

          printf(â€œEnter an age  â€œ); scanf(â€œ%dâ€•, &age[i]);

     }

     for(i=0; i<4; i++)

          printf(â€œ\nYou entered   %dâ€•, age[i]);

     return 0;

}

 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 87 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

Like other variables in C, an array must be defined before it can be used to store information. And, like other definitions, an array definition specifies a
variable type and a name. 

But it includes another feature: a size. The size specifies how many data items the array will contain. It immediately follows the name, and is surrounded by
square brackets.

 3. Array Elements

The items in an array are called elements. Single Dimensional array accepts values to either row wise or column wise. It can store only one set of values.
  The first array element is 0, second is 1 and so on.     
   

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 88 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      

An array value can be initialized directly at design time.
    Initialization of arrays is as follows..		   
   

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 89 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

	  

 	   4. Passing Arrays to Functions  Arrays can be used as arguments to functions. 
  In a function declaration, the data type and sizes of the array represent array arguments.
  

void display(float [DISPLAY][MONTHS]);

  When the function is called, only the name of the array is used as an argument.
  

display(sales);

  

Program to accept and print array of 10 elements   

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 90 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

/* 48_ ele10.c */

#define  MAX 10

display(int a[MAX])

{

     int i;

     for(i = 0;i<MAX; i++)

          printf(â€œ\n%dâ€•,,a[i]);

}

int main()

{

     int x[MAX], i;

     for(i=0;i<MAX; i++)

          scanf(â€œ%dâ€•,&x[i]);

     display(x);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 91 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

    	

Returning array of values from functions is also possible but we must be clear with the concept of pointers. Please look in to the pointers topics for more
info.

 5. Classification of Arrays

Arrays are of two types. 
 1.	Single dimensional Arrays
  2.	Multi Dimensional Arrays

1.	Single Dimensional Arrays

A single dimensional array is a collection of elements in a row or a column fashion.
A single dimensional array can accept the following operations.     
   1.	Append element
  2.	Insert element
  3.	Delete element
  4.	Replace element
  5.	Search element
  6.	Deletion of array
  7.	Sorting of an array  

  The following program is able to perform all the tasks described above.    
     

/*  ARRAY FUNCTIONS  */

/* 49_sarray.c */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 92 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

#define N 100

#define M 10

int i,j,r,c,r1,r2,c1,c2;

    

/*  Read  Array elements  */

int accept_values(int a[N])

{

     int n;

     printf("\nHow many values you wish to enter..?  ");

     scanf("%d",&n);

     printf("\nEnter the data elements..\n");

     for(i=0;i<n;i++)

          scanf("%d",&a[i]);

     return n;

}

    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 93 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* Display array elements */

void display(int a[N],int n)

{

     printf("\n Array elements are...");

     for(i=0;i<n;i++)

          printf("\n%d",a[i]);

}

    

/* Delete array element */

int delete_cell(int a[N],int n)

{

     int pos;

     char ch;

     printf("\nEnter the position of element to be deleted: ");

     scanf("%d",&pos);

     for(i=pos-1;i<n;i++)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 94 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          a[i] = a[i+1];

     n--;

     printf("\n Do you wish to continue..(y/n)?");

     ch = getche();

     if(ch == 'y')	delete_cell(a,n);

     return n;

}

    

/*  Insert array element */

int insert_cell(int a[N],int n)

{

     int pos, new;

     char ch;

     printf("\nEnter the element to be inserted: ");  scanf("%d",&new);

     printf("\nEnter the position of insertion: ");     scanf("%d",&pos);

     for(i=n;i>=pos;i--)

          a[i] = a[i-1];

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 95 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     a[pos-1] = new;

     n++;

     printf("\n Do you wish to continue..(y/n)?");

     ch = getche();

     if(ch=='y')	insert_cell(a,n);

     return n;

}

    

/*  To append element to an existing array */

int append_cell(int a[N],int n)

{

     int pos, new;

     char ch;

     printf("\nEnter the element to be appended: ");

     scanf("%d",&new);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 96 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     a[n] = new;

     n++;

     printf("\n Do you wish to continue..(y/n)?");

     ch = getche();

     if(ch=='y')append_cell(a,n);

     return n;

}

    

/* Sorting a list of elements of an array in descending order */

void sort_list_descend(int a[N],int n)

{

     int temp;

     for(i=0;i<n;i++)

          for(j=i;j<n;j++)

               if(a[i] < a[j])

               {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 97 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                    temp = a[i];

                    a[i] = a[j];

                    a[j] = temp;

               }

     printf("\nThe sorted elements in the descending order are...");

}

    

/* Sorting a list of elements of an array in ascending order */

void sort_list_ascend(int a[N],int n)

{

     int temp;

     for(i=0;i<n;i++)

          for(j=i;j<n;j++)

               if(a[i] > a[j])

               {

                    temp = a[i];

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 98 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                    a[i] = a[j];

                    a[j] = temp;

               }

     printf("\nThe sorted elements in the ascending order is..");

}

    

/* To find the smallest and biggest of an existing array */

void small_big(int a[N],int n)

{

     int temp;

     for(i=0;i<n;i++)

          for(j=i;j<n;j++)

               if(a[i] < a[j])

               {

                    temp = a[i];

                    a[i] = a[j];

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 99 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                    a[j] = temp;

               }

     printf("\nThe Smallest element is : %d",a[n-1]);

     printf("\nThe Biggest element is : %d",a[0]);

}

    

/* Search for an element in an array */

void search(int a[N],int n)

{

     int target, temp=0;

     printf("\n Enter element to be searched: ");

     scanf("%d",&target);

     for(i=0;i<n;i++)

          if(a[i] == target)

          {

               printf("\nFound at position no. %d",i+1);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 100 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

               temp = 1;

          }

     if(temp == 0)

          printf("\n Not found");

}

    

/* Main program */

/*  To demonstrate simple array operations  */

#include<stdio.h>

#include<conio.h>

#define m 100

int main()

{

     int a[m],n;	char ch;

     clrscr();

     n = accept_values(a);

     do

     {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 101 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          printf("\n 1 - Append_cell");

          printf("\n 2 - Delete_cell");

          printf("\n 3 - Insert_cell");

          printf("\n 4 - Sort_list_descend");

          printf("\n 5 - Sort_list_ascend");

          printf("\n 6 - Small_big");

          printf("\n 7 - Search");

          printf("\n 8 - Remove_list");

          printf("\n 9 - Exit");

          printf("\n Enter your choice: ");

          ch = getche();

          printf("\n");

          switch(ch)

          {

               case '1': n = append_cell(a,n);		break;

               case '2': n = delete_cell(a,n);		break;

               case '3': n = insert_cell(a,n);		break;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 102 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

               case '4': sort_list_descend(a,n);	break;

               case '5': sort_list_ascend(a,n);	break;

               case '6': small_big(a,n);		break;

               case '7': search(a,n);			break;

               case '8': n = 0;				break;

               case '9': printf("\nThis will terminate your program.");	break;

          }

          display(a,n);

          printf("\nDo you wish to run again..(y/n)?");

          ch = getche();

     }

     while(ch!='9');

     return 0;

}

       

  2.	Double Dimensional Arrays

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 103 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A double dimensional array is a collection of elements in row and column fashion.
A Multi dimensional array can accept the following operations.

A multi dimensional array is commonly used in the areas of matrices to understand whole tasks in an easiest approach.

MATRIX FUNCTIONS  
        

/* 50_menumat.c */

#define N 100

#define M 10

int i, j, r, c, r1, r2, c1, c2;

	

/*  Read the values for a MATRIX  */

void read_matrix(int A[M][M])

{

     printf("\nHow many rows?  ");

     scanf("%d",&r);

     printf("\nHow many columns?  ");

     scanf("%d",&c);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 104 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     for(i=0;i<r;i++)

          for(j=0;j<c;j++)

               scanf("%d",&A[i][j]);

}

	

/*  Write the values of a MATRIX  */

void disp_matrix(int A[M][M])

{

     for(i=0;i<r;i++)

     {

          for(j=0;j<c;j++)

          printf("%5d",A[i][j]);

          printf("\n");

     }

}

	

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 105 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* To find the TRANSPOSE for a MATRIX of ANY ORDER  */

void tra_matrix_1(int T[M][M],int A[M][M])

{

     printf("\nTranspose of A is\n");

     for(i=0;i<c1;i++)

     {

          for(j=0;j<r1;j++)

          {

               T[i][j] = A[j][i];

               printf("%5d",T[i][j]);

          }

          printf("\n");

     }

}

	

/* To ADD two MATRICES

( possible,only if they are of EQUAL ORDER )  */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 106 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

void add_matrix(int C[M][M],int A[M][M],int B[M][M])

{

     for(i=0;i<r;i++)

          for(j=0;j<c;j++)

               C[i][j] = A[i][j] + B[i][j];

     printf("\nSum of A and B is");

}

	

/*  To MULTIPLY MATRICES of ANY ORDER

( provided they follow the  MATRIX MULTIPLICATION RULE )   */

void mul_matrix_1(int C[M][M],int A[M][M],int B[M][M])

{

     int k;

     printf("\nProduct of A and B is..\n");

     printf("\nMatrix C\n");

     for(i=0;i<r1;i++)

     {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 107 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          for(j=0;j<c2;j++)

          {

               C[i][j]=0;

               for(k=0;k<r2;k++)

                    C[i][j] = C[i][j]+(A[i][k]*B[k][j]);

               printf("%5d",C[i][j]);

          }

           printf("\n");

      }

}

	

/*  To SUBTRACT two MATRICES

( possible,only if they are of EQUAL ORDER )  */

void sub_matrix(int C[M][M],int A[M][M],int B[M][M])

{

    for(i=0;i<r;i++)

        for(j=0;j<c;j++)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 108 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            C[i][j] = A[i][j] - B[i][j];

    printf("\nDifference of A and B is");

}

	

/*  A MENU driven program to perform MATRIX operations  */

#include <stdio.h>

#include <conio.h>

int main()

{

    int A[M][M],B[M][M],C[M][M],T[M][M];    char ch;

    clrscr( );

    printf("\nEnter matrix A elements..\n"); read_matrix(A);	r1=r;	c1=c;

    printf("\n   Matrix A\n");	disp_matrix(A);

    printf("\nEnter matrix B elements..\n"); read_matrix(B);	r2=r;	c2=c;

    printf("\n   Matrix B\n");disp_matrix(B);

    do {

        printf("\n1:Addition");

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 109 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

        printf("\n2:Subtraction");

        printf("\n3:Multiplication");

        printf("\n4:Transpose");

        printf("\n5:Exit");

        printf("\nEnter your choice..");    ch = getche();

        switch(ch)

        {

            case '1':

                    if(r1==r2 && c1==c2)

                    {

                        add_matrix(C,A,B);printf("\nMatrix C\n");

                        disp_matrix(C);

                    }

                    else

                    {

                        printf("\nYour entered values of r1,r2 && c1,c2 are not equal,");

                        printf("\nhence I cannot do this Matrix Addition.");

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 110 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                        printf("\nPlease enter the correct matrices.");

                    } break;

            case '2':

                    if(r1==r2 && c1==c2)

                    {

                        sub_matrix(C,A,B);printf("\nMatrix C\n");

                        disp_matrix(C);

                    }

                    else

                    {

                        printf("\nYour entered values of r1,r2 && c1,c2 are not equal,");

                        printf("\nhence I cannot do this Matrix Subtraction.");

                        printf("\nPlease enter the correct matrices.");

                    } break;

            case '3':

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 111 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                    if(c1==r2)

                        mul_matrix_1(C,A,B);

                    else

                    {

                        printf("\nColumns(c1) of Matrix A are NOT EQUAL TO");

                        printf(" Rows(r2) of Matrix B.");

                        printf("\nHence I cannot do this Matrix Multiplication.");

                        printf("\nPlease enter matrices such that c1 == r2.");

                    } break;

            case '4':   printf("\nOrder of Matrix A is %d x %d",r1,c1);

                        tra_matrix_1(T,A);

                        printf("\nOrder of A transpose is %d x %d",c1,r1);  break;

            case '5': printf("\nThis will terminate your program."); break;

        }

        printf("\nDo you wish to run again...[y/n]?");   ch=getche();

    }while(ch!='5');

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 112 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    return 0;

}

  

08. Step-by-Step C/C++ --- C Programming - Strings   
 

Strings  
         - Introduction    
         - Characteristics of a strings    
         - Operations on Strings    
                   1.	Definition of Strings
                2.	Initialization of Strings
                3.	Reading and printing of Strings
                4.	Reading Embedded Blanks
                5.	Length of a String
                6.	Strings and Functions
              7.	Array of Strings  

 Introduction

Arrays are used to examine strings, generally strings are of array type variables. 
A string is a collection of characters including space where as word is a collection of characters excluding space. Every string variable must be terminating
with ˜�(TM) null character and the index value is starts with 0.

Every string has the following characteristics: 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 113 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 1.	It must be a collection of characters (i.e. characters, numbers, and special characters).
  2.	Every string must be ends with a NULL character ( i.e. ˜�(TM) )
  3.	A unique positive number called index identifies each character of a string.
  4.	Index value must be starts with 0.
  5.	Random access on characters in a string is possible.
  6.	A string must be declared with its fixed size like arrays.
For Example consider the following example:

char str = " magic";

 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 114 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A variety of string library functions are used to manipulate strings. An array of strings is an array of arrays of type char.

 Operations on Strings

We can perform much better operations than using Library string functions.
  Strings can accept the following operations. 
           1.	Definition of Strings
                2.	Initialization of Strings
                3.	Reading and printing of Strings
                4.	Reading Embedded Blanks
                5.	Length of a String
                6.	Strings and Functions
              7.	Array of Strings

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 115 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

1. Definition of a String  

  Every variable must be declared at the beginning of the program.
Definition of string variable is as follows. 
 

2. Initialization of Strings

  Strings can be initialized in the following methods. 
   1. Direct Assignment  

char name[10] = "Ashitha";

  Assigns "Ashitha" to name rest of the place left blank.  2. Direct Assignment without Size  

char name[] = "Ashitha";

  Assigns "Ashitha" to name and fix it(TM)s width up to the size of Constant.  
         3. Design time Assignment      

char name[10];

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 116 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

strcpy(name, "Ashitha");

      Using Strings functions it is possible.
        But C never support the assignment like : 
    name = "Ashitha";    4. Runtime Assignment      

char name[10];

scanf("%s", name);

    It accepts and assigns constant value to variable at runtime.  

3. Reading and Printing Strings

  C provides various types of string functions to read and print a string constant. Listed below. 
 Input Statements
  getch
  getche
  getchar
  gets
  scanfOutput Statements
  putch

  putchar
  puts
  printf 
 /* Program to accept and display a string */
    

/* 51_strings.c */

#include <stdio.h>

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 117 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     char str[20];

     scanf("%s", str);

     printf("%s" str);

     return 0;

}

 
 /* Program to accept and display a string with a prompt */

/* 52_strings.c */

#include <stdio.h>

int main( )

{

     char str[20];

     printf("Enter a string :"); 	scanf("%s", str);

     printf("\nYou entered  :    %s", str);

     return 0;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 118 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

4. Reading embedded blanks

  scanf Accepts string, thus it will read strings consisting of a single word, but anything typed after a space is thrown away.

Eg. Enter String  : Law is a bottomless pit. 
You entered : Law

To read text containing blanks we use another function, gets(). 
 /*read string with embedded blanks */
  

/* 53_gets.c */

const int MAX = 80;

int main()

{

     char str[MAX];

     print("Enter a string :");  	gets(str);

     printf("You entered  :"); 	puts(str);

     return 0;

}

5. Length of String

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 119 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  Every string has its fixed length depending on its constant.
  The following program demonstrates, How to find the length of the string 
 /* To find the length of a given string */
  

/* 53_length.c */

#include <stdio.h>

int main()

{

     int i=0;

     char str[50];

     printf("Enter a string  "); gets(str);

     while(str[i] != '\0')  	i++;

     printf("Length is  %d", i);

     return 0;

}

6. Strings and Functions

  A function is a self-contained block of statements that perform a specific task. The best way to organize strings.
The following are the example of string organization using functions. 
 /* Program to find the length of a string */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 120 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 54_len.c */

#include <stdio.h>

int len_str(char s[]);

int main()

{

     int l;    	char str[50];

     printf("Enter a string  "); gets(str);

     l = len_str(str);

     printf("\nLength of string   : %d", l);

}

int len_str(char s[])

{

     int l=0;

     while(s[l] != '\0')   l++;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 121 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return l;

}

 
 /* Program to accept and print a string */

/* 55_str.c */

#include <stdio.h>

void disp_str(char s[]);

int main()

{

     char str[50];

     printf("Enter a string  "); gets(str);

     disp_str(str);

     return 0;

}

void disp_str(char s[])

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 122 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int i=0;

     while( s[i] != '\0' )	putch(s[i++]);

}

7. Array of Strings

  Arrays are used to examine strings, generally strings are of array type variables. So, we can access array of strings.
  The following examples illustrate, How Array of Strings organized.   
 /* Program to display an array of strings */

/* 56_display.c  */

#include <stdio.h>

void main()

{

     char week[7][] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" };

     int i;

     for( i = 0; i<7; i++)	puts(week[i]);

}

 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 123 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 /* Program to accept and display an array of strings */
  

/* 57_strings.c  */

#include <stdio.h>

void main()

{

     char names[7][10];  	int i;

     for( i = 0; i<7; i++)	gets(names[i]);

     for( i = 0; i<7; i++)	puts(names[i]);

}

09. Step-by-Step C/C++ --- C Programming - Pointers  Pointers  
 1.	About Memory
2.	Addressing Scheme
3.	How to find the address of a Variable
4.	Pointers
5.	Pointer Arithmetic
6.	Pointers and Arrays
7.	Pointers and Strings
8.	Glossary

 1. About Memory

 Computer has the feature to store data, and manipulate them. Storage of data requires a storage device, which was comfortable to store and retrieve data

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 124 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

quickly and accurately with out confusion. Commonly Computer has to compromise with two storage methods. 
 

SRAM               Static  Random Access Memory
  DRAM               Dynamic  Random Access Memory
  EEPROM          Electrically  Erasable Programmable Read Only Memory

Memory chips can  store data, instructions and intermediate & final results. The memory is  organized into bytes, each byte capable of storing one character
of  information. Each byte of memory has an address or location number, which  uniquely identifies it. The size of memory is measured either in kilobytes 
(KB), megabytes (Mb), gigabytes or terabytes (TB).

RAM: 
  Memory device is a  storage location to store information. 
  The Vital Computer  resource memory is allocated to each of the variable after their declaration in  the C-Program. The type of the variable decides the
number of bytes of memory  to be allocated to each variable.     
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 125 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    

   2.  Addressing Scheme   
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 126 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    

The above picture tells you the  following information.       
 1.	RAM is a temporary memory and a part of the computer.
    2.	It can hold the value of program.
    3.	Every byte in RAM has identified with a unique positive number called address.
    4.	Addresses are as numbers, just as they are for houses on a street.
    5.	The number starts at 0 and go up from there 1-2-3 and so on.
    6.	If we have 640 KB of memory the highest address is 655, 359, for 1mb of memory it is 1,048,575.
    7.	Our program, when it is loaded into memory, occupies a certain range of these addresses.
    8.	That means that every variable and every function in out program starts at a particular address.    

 3. How to find the address of a Variable  

In the last section point 8 tells each and every variable/function starts at a particular address. Addresses are unique positive numbers in the hexa decimal
format.  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 127 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 Finding address of a variable is a simple task through the operator & (address of).    

& ( address of ) - It can tell you the address of variable / function in the current program.
    
  The following program demonistrates to find the address of a variable ˜a(TM)    
 

/* 58_address.c */

#include <stdio.h>

int main()

{

     int a = 10;

     printf("\n Value of A is          :  %d", a);

     printf("\n Address of A is      :  %d", &a);

     return 0;

}

  
	Replace the above marked format values with the following format to get absolute hexadecimal address value.
	0x%x
	Ex.
	

printf("\nAddress of A is     : 0x%x", &a);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 128 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  Program to find the address of function ˜disp()(TM)	 
   

/* 59_address.c */

#include <stdio.h>

void disp()

{

     printf("\nHello");

     printf("\nHow are");

     printf("\nYou");

}

	

int main()

{

     disp();

     printf("\nAddress of   disp()      : 0x%x", &disp);

     return 0;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 129 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  4. Pointers

  According to the last section we know how to find and display the address of a variable/function.
  This time we learn about how to store the address of a variable/function in another variable.

Note: Variables can hold constant values. 
   Try with the following:  

int a, b;

a = 5;    	           /*  Valid   */

b = &a;		          /* In valid */

  Again Try with the following:      

int a,  *b;

a = 5;		           /* Valid   */

b = &a;		          /* Valid */

b = &a; correct! Yes, variables (General variables) are unable to hold addresses. But variables proceeded with ˜*(TM) (Pointer Variables) are able to hold
both constant values as well as address of another variables/functions.

Pointer: Variable that holds address values. 
 Variables (General)
  General variable performs only one operation to hold constant values

Pointer variables ( Variables preceded with ˜*(TM))
  Pointer variables can perform two operations to hold constant values as well as address values of other variables/functions  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 130 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Reference to / Pointer to / Content at address (*)

int *ptr;

To the uninitiated this is a rather bizarre syntax. The asterisk means pointer to. Thus the statement defines the variable ptr as a pointer to int. This is another
way of saying that the variable can hold the address of integer variables. 
   If we called it, type pointer we could write declaration like.
  

pointer   ptr;		          /*  invalid */

  The problem is that the compiler need to know what kind of variable the pointer points to.
 
 Declaration of a pointer variable
  

char  *cptr;			          /* Pointer to character  */

int  *iptr;			           /* Pointer to int  */

float *fptr;			           /*  Pointer to float */

struct emp  *e;			           /* Pointer to abstracted data emp e */

 Accessing the variable Pointed to:Here is the special way to access the values of a variable using its address instead of its name.
 
 

/* 60_addr.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 131 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

     int var1  = 11;			          

/*  variable var1 = 11  */

     int *ptr;				          /*  Variable ptr as pointer to */

     ptr = &var;			          /* Hold the address of var to ptr  */

     printf("Value of var1 is     %d", *ptr);           /* Pointer to the address of  var1  */
     return 0;
} 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 132 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

If the statement is printf (œ%d•, ptr); then it displays the value of ptr means the address of var1, but the above statement can display the content of the
address, which was stored in variable ptr. 

Program to demonstrate the use of Address_Of and Pointer_To 
 

/* 61_ptrdemo.c */

#include <stdio.h>

int main()

{

     int a = 10, *p;			          

/*  Integer a and pointer p  */

       p = &a;				          /*  Assign address of a to p */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 133 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

           printf("nValue of A    		:    %d", a);		          /* Content of a */
             printf("nAddress of A 		:  0x%x", &a);		          /* Address of a */
             printf("nValue of P		:  0x%x",  p);		          /* Content of p */
             printf("nAddress of P		:  0x%x", &p);		          /* Address of p */
             printf("nContent at address of a   : %d", *p);		          /* Pointer to &a */
             return 0;
        }

 5. Pointer Arithmetic

All the variables can support arithmetic operations, as well as we can perform arithmetic operation on pointers also.  C/C++ language can supports 4
Arithmetic operations on Pointers namely. 
 Operation
  Addition
  Subtraction
  Incrementation
  DecrementationSymbol
  +
  -
  ++
  --
Note: The main characteristic of pointer arithmetic is that the above operators in bytes with reference to its variable type.
 
 

/* 62_ptr.c */

/* Demonistration of pointer arithmetic */

#include <stdio.h>

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 134 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

     int a, *p;

     a = 100;

     p = &a;

     (*p)++;     /* Increment pointer to (content at address) by 1 */

     printf("%d", *p);

     return 0;

}

  
         Output
    101  

Demonstration of Pointer arithmetic,  Increment the address value 
 

/* 63_ptr.c */

/* Increment the address value by 1 */

#include <stdio.h>

int main()

{

     int a, *p;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 135 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     a = 100;

     p = &a;

     *p++;	/* Increment the address value in p by 1 */

     printf("%d", *p);

     return 0;

}

  
         Output
    Unexpected output  

 The above program illustrates the arithmetic operators with respective of both value and address incrementation. p is a pointer variable and a is assigned
with 100, as well as p is assigned with the address of a.

 Now *p++ effects incrementing or actually skipping the memory by 2 bytes to get new address and their its content.
    
  If it(TM)s (*p)++, then that the content pointed by p is 100 is incremented, resulting 101.

 6. Pointers and Arrays

 In C/C++ language the data types pointers and arrays resembles with each other. The array element references as well as the pointer variable, both are used
to hold the address of data elements in memory. 
  char name[20];
  Or
  char *name ;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 136 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  char months[12][10];
        Or
        char **months;

There is a close association between pointers and arrays. Here is a review on arrays.   
 

/* 64_ptrarr.c */

#include <stdio.h>

int main()

{

     int i, a[5] = { 56, 43, 78, 98, 12 };

     for( i = 0, i < 5; i++)

          printf("\n%d", a[i]);

     return 0;

}

  

There is a possibility to access array elements using pointer notation.
  Find the output of the following program.   
 

/* 65_ptrarr.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 137 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

     int i, a[5] = { 56, 43, 78, 98, 12 };

     for( i = 0, i < 5; i++)

          printf("\n%d", *(a+ i) );

     return 0;

}

Follow the next program:   
 

/* 66_ptrarr.c */

#include <stdio.h>

int main()

{

     int i, a[ ] = { 56, 43, 78, 98, 12 }, *p;

     p = a;

     for( i = 0, i < 5; i++)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 138 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          printf("\n%d", *(p+ i) );

     return 0;

}

Here is an easiest approach to print the elements of the given array (size not required).   
 

/* 67_ptrarr.c */

#include <stdio.h>

int main()

{

     int i, a[ ] = { 56, 43, 78, 98, 12 }, *p;

     p = a;

     while	(*p)			          /* or for(int i = 0; i<5; i++ )  */

          printf("\n%d", *p++);

     return 0;

}

 7. Pointers and Strings

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 139 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A string is a collection of characters including spaces. This time we discuss about how to handle strings using pointers. No more discussions to make
confusion. Here is the simple task to verify both pointer and array of strings.

There is a subtle difference between strings & pointers follow the program. 
 

/* 68_ptrstr.c */

#include <stdio.h>

int main()

{

     char str1[ ] = "You would like to explore C.";

     char *str2 = "You would like to explore C.";

     puts(str1);

     puts(str2);

     str1++;		/* Invalid expression  */

     str2++;		/* Valid expression */

     puts(str2);	/* prints  ou would like toâ€¦â€¦  */

     return 0;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 140 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Strings as Function Arguments

A pointer variable is more flexible than array variables, Here is the program to demonstrate & displays a string with pointer notation. 
 

/* 69_ptrarr.c */

#include <stdio.h>

void disp(char *p);

int main()

{

     char str[ ] = "Hello!!..Hello!!..  Pointers can handle it?";

     disp(str);

     return 0;

}

void disp(char *p)

{

     while(*p)

     printf("%c", *p++);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 141 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

Array of pointers to strings

There is a disadvantage to store an array of strings, in that the sub arrays that hold the string must all be the same length. So that space is wasted when
strings are shorter than the sub arrays.
  Here is the solution:   
 

/* 70_strings.c */

#include <stdio.h>

int main()

{

     char *weeks[7 ] = { "Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday" };

     int i;

     for( i = 0; i<7; i++)

          puts(weeks[ i ] );

     return 0;

}

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 142 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

When strings are not part of an array, C/C++ places them contiguously in memory, So there is no wasted spaces.
  
/* An example program to hold an array of pointers of type ˜int(TM) */ 
 

/* 71_ptrarr.c */

#include <stdio.h>

int main()

{

     int *arr[4]; 		/* Array of int pointers */

     int i = 31, j = 5, k = 19, l = 71, m;

     arr[0] = &i;

     arr[1] = &j;

     arr[2] = &k;

     arr[3] = &l;

     for(m = 0; m <= 3; m++)

          printf("\n%d", *(arr[m]) );

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 143 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

  A look on Library Functions

  We are already familiar with standard string functions. They have string arguments that are specified using pointer notation,
  If we are clear with pointers & strings concept, we are able to write our own string functions.
  Here is an example program to copy string.
  
  /* Copies one string to another with pointers  */  
 

/* 72_strcpy1.c */

#include <stdio.h>

void strcpy1(char * dest, char *src);

int main()

{

     char *str1 = "How can I learn more about C/C++ !!!";

     char *str2;

     strcpy1(str2, str1);

     puts(str2);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 144 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

      

void strcpy1(char * dest, char *src)

{

     while(*src)

          *dest++ = *src++;

     *dest = â€˜\0â€™;

}

 8. Glossary  
    

Address     

A value that points to a location in memory. A    pointer contains the address or location of a value, as opposed to the value    itself.    
    

Array    

An array is a collection of data items of the same    type.    
    

Contiguous    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 145 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A storage characteristic that specifies that the    values are stored in consecutive locations either in memory or on disk.    
    

Function    

A series of instructions to perform a specific task,    which can be combined with other functions to create a program.    
    

Memory     

Descriptive of a device or medium that can accept    data, holds them, and deliver them on demand at a later time. Synonymous with    storage.    
    

Pointer    

Contains the address or memory location of a value,    as opposed to the value itself.    
    

RAM    

(Random Access Memory) 1. A storage device    structured so that the time required retrieving data is not significantly    affected by the physical location
of the data.  2. The primary    storage section of a personal computer.    
    

String    

An array capable of storing zero or more characters.    In C. a string is declared as a character array with the NULL (�) character    appended to specify the
end of the string.    
    

Variable     

A name associated with a location in memory whose    value can change during program execution.  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 146 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

10. Step-by-Step C/C++ --- C Programming - Structure  Structures 
 1.	Introduction
  2.	Declaration of Structure
  3.	Defining a Structure Variable
  4.	Initializing a Structure Variable
  5.	Direct assignment of structures
  6.	Calculation of Structure size
  7.	Nested Structures
  8.	Array of Structures
  9.	Arrays within Structures
  10. Passing Structures to Function
  11. Returning Structures from Functions
  12. Pointer To structure
  13. Structure containing Pointers
  14. Self Referential Structures

 1.	Introduction  
 

int a[4] = { 3, 4, 5, 6 };   		               /* Valid  expression */

int a[4] = { 3, 4.23, 5, 6 };  	               /* Invalid expression */

int a[4] = { 3, "Siglov", 5,3}	               /* Invalid expression */

Why the last two expressions are invalid? An array can store values of same type. Must be the same type. Where as a structure can hold more than one type
of data according to its definition.    
 ¢	A group of one or more variables of different data types organized together under a single name is called a structure or 
  ¢	A collection of heterogeneous (dissimilar) types of data grouped together under a single name is called a structure or 
  ¢	A structure is a collection of simple variables. The variable in a structure can be of different types. The data items in a structure are called the members
of the structures.  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 147 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 2. Declaration of a structure 

When a structure is defined the entire group is referenced through the structure name. The individual components present in the structure are called as the
structure members and these can be accessed and processed separately.  
   

Eg:  
 

struct date

{

     int day;

     int month;

     int year;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 148 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

};

struct student

{

     int sno;

     char name[20];

     int marks;

     float avg;

};

 3. Defining a Structure Variable

Defining a structure variable is the same as that for defining a built-in data type such as int.	 
 

            int a;                             /*  valid */
              date d;                          /* valid (But in C++ only ) */ 
              struct date d;                 /* valid in both C and C++  */

 4. Initializing a Structure variable

	The members of the structure can be initialized like other variables. This can be done at the time of declaration or at the design time.  
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 149 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

1.    Initialization at Declaration:
      struct ddate
      {
             int day;
             int month;
             int year;
      } d = { 27, 10, 2000 };    

2.    Initialization at Definition:
      struct ddate d = { 27, 10, 2000 };    
          
- Initialization    at design time:            

ddate d;
          d.day = 27;
          d.month = 10;
          d.year = 2000;    

4.    Initialization at run time:
      scanf("%d%d%d", &d.day,    &d.month, &d.year);  

  Eg:  
   

/* Write a  program to accept and print the details of an employee */

/* 73_struct.c  */

#include  <stdio.h>

struct emp

{          

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 150 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

           int eno;

           char name[20];

           float sal;

};

int main()

{

           struct emp e;

           

           printf("Enter Employee number    :"); scanf("%d", &e.eno);

           printf("Enter Employee name        :"); scanf("%s", e.name);

           printf("Enter Employee salary        :"); scanf("%d", &e.sal);

           printf("\n\nEmployee Details are as followsâ€¦.\n");

           printf("%d    %s      %d", e.eno, e.name, e.sal);

           return 0;

}

 5. Direct assignment of structures

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 151 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Direct assignment of more than one variable is made possible using structures. 
 

struct emp a, b = {1001, "Vimal", 6700.00 };

a = b; 			/* Valid  */

printf("%d  %s  %d" , a.eno, a.name, a.sal );

  
         Output:
1001 Vimal                   6700.00  

 6. Calculation of structure size	

Every data type in C/C++ has a specified size, i.e int has 2 bytes of size, float has 4 bytes of size and so on. Here is the way to find the size of a structure
variable.

sizeof          :- This function is used to find the size of a given variable.	 
 

printf("%d", sizeof(int));                           /* 2  */

printf("%d", sizeof(float));                       /* 4  */

printf("%d", sizeof(struct emp));              /* Displays the size of the emp  structure */

 7. Nested Structures

	Structure with in structures in known as nested structures. For accessing nested structure members we must apply the dot operator twice in calling structure
members.

Eg: 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 152 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

/*  program to demonstrate nested structure with employee structure */

/*  74_nested.c */

#include  <stdio.h>

struct  emp

{

            int eno;

            char name[10];

            float sal;

           struct                                                    /*  Nested Structure  */

            {

                        street  char[10];

                        city  char[10];

            } addr;

};

int  main()

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 153 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            struct emp e;

            printf("Enter emp_no, emp_name,  emp_sal, street, city ");

            scanf("%d%s%d%s%s", &e.eno,  e.name, &e.sal, e.addr.street, e.addr.city  );

            printf("\n\nEmployee Details are as  follows   â€¦.\n");

            printf("%d%s%d%s%s", e.eno, e.name,  e.sal, e.addr.street, e.addr.city );

            return 0;

}

 8. Array of Structures

We can create an array of structures. The array will have individual structures as its elements. 
 

/* Write a program to accept and print the details  of an employee */

/* 75_array.c  */

#include <stdio.h>

struct emp

{          

            int  eno;

            char  name[20];

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 154 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            float  sal;

};

int main()

{

            struct  emp e

[10]

; 
              int  i;
              for(i  = 0; i<10; i++)
               {
                          printf("Enter  Employee number    :"); scanf("%d",  &e[i].eno);
                          printf("Enter  Employee name        :"); scanf("%s", e[i].name);
                           printf("Enter Employee salary       :"); scanf("%d", &e[i].sal);
              }
               printf("nnEmployee Details are as follows¦.n");
               for(i = 0; i<10; i++)
                            printf("%d    %s      %d", e[i].eno,  e[i].name, e[i].sal);
               return 0;
  }

Nothing is new in the above program. Entire program is same as simple structured program except the marked data.

 9. Arrays with in Structures

	There may be a situation to utilize arrays with in structures. How to achieve arrays with in structures.  Here is the approach with simple program. 
  

/* Program to accept and print a student  information  */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 155 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 76_array.c */

#include <stdio.h>

struct stud

{

            int  sno;

            char  name[10];

            int  marks[5];                              /*  Array with in structure */

};

int main()

{

            struct  stud s;

            int  i;

            printf("Enter  Student number  "); scanf("%d",  &s.sno);

            printf("Enter Student name          "); scanf("%d", s.name);

            for(  i = 0; i<3; i++)

            {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 156 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                        printf("Enter  student marks  "); scanf("%d",  &s.marks[i]);

            }

            printf("\n\nStudent  Records is as followsâ€¦.\n");

            printf("%d  %s   %d  %d  %d", s.sno, s.name, s.marks[0], s.marks[1],  s.marks[2] );

            return  0;

}

 10. Passing Structures to Functions	

It is possible to send entire structures to functions as arguments in the function call. The structure variable is treated as any ordinary variable. 
 

/* Program to pass a structure variable to function  */

/* 77_funct.c */

#include <stdio.h>

struct emp

{

            int  eno;

            char  name[10];

            float  sal;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 157 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

};

void display(struct emp temp);

int main()

{

            struct  emp e;

            display(e);

            return  0;

}

void display(struct emp temp)

{

            printf("%d  %s   %d", temp.eno, temp.name, temp.sal );

}

 11. Returning Structures from functions	

We can return structures from functions. Yes structures can be returned from functions just as variables of any other type. 
 

/* Returning structure object from a function */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 158 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 78_funct.c */

struct emprec

{

            int eno;

            char name[10];

};

struct emprec read();

void write(struct emprec t);

int main()

{

            struct emprec e;

            e = read();

            write(e);

            return 0;

}

void write(struct emprec t)

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 159 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            printf("\n\n%d  %s", t.eno, t.name);

}

struct emprec read()

{

            struct emprec t;

            printf("Enter Employee  number   :"); scanf("%d", &t.eno);

            printf("Enter Employee  name         :"); scanf("%s", t.name);

            return t;

}

 12.	Pointer to Structure

Till now we have seen that the members of a structure can be of data types like int, char, float or even structure. C/C++ language also permits to declare a
pointer variable as a member to a structure. Pointer variables can be used to store the address of a structure variable also. A pointer can be declared as if it
points to a structure data type. 
 

/* Program to demonstrate the process of Pointer to structure */

/* 79_pointer.c */

#include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 160 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

struct employee

{

            int eno;

            char name[10];

};

struct employee *emp;

int main()

{

           

emp  = (struct employee * )malloc(sizeof(emp));

              printf("Enter Employee  Details ..");
              scanf("%d%s%",  &emp->eno, emp->name);
              printf("nn%d   %s", emp->eno,  emp->name);
              return 0;
  }

The marked data is essential to implement pointer to structure.
  The following statement is optional, but better to utilize to organize better memory management.
  emp = (struct employee * )malloc(sizeof(emp));  

 13.	Structures Containing Pointers

A pointer variable can also be used as a member in the structure.
The following program contains pointer members contained by a pointer variable of structure. 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 161 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

/* program to demonstrate the use of structures containing Pointers */

/* 80_pointers.c  */

#include <stdio.h>

struct

{

            int *a;

            int *b;

} *temp;

int main()

{

            int x, y;

            x = 20; y = 50;

            rk -> a = &x;

            rk -> b = &y;

           

            printf("%d %d ",  *temp->a, *temp->b );

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 162 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            return 0;

}

  
         

output:
    20    50   

 14.	Self Referential Structures

Structures can have members, which are of the type the same structure itself in which they are included. This is possible with pointers and the phenomenon
is called as self-referential structures. 
 

struct emp

{

            int eno;

            char name[10];

            struct emp *e;   

};

Self-referential  structures can be used mainly in arranging data, sorting, searching elements,  insertion, deletion of elements and so on. 

This way of  approach leads to Data structures (i.e., Linked Lists, Stacks, Queues, Trees  and Graphs).

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 163 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

11. Step-by-Step C/C++ --- C Programming - UnionsUnions   
 1.	Introduction
  2.	About Union
  3.	Declaration of a Union
  4.	Defining a Union Variable
  5.	Difference Between Structure and Union
  6.	Operations on Unions
  7.	Scope of a Union

  1. Introduction 
 

/* 81_union.c */

#include <stdio.h>

struct s_emp

{

            int eno;

            char name[20];

            float sal;

};

union u_emp

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 164 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            int eno;

            char name[20];

            float sal;

};

int main()

{

            struct s_emp se;

            union u_emp ue;

            printf("\nSize of Employee  structure    :  %d", sizeof(se));

            printf("\nSize of Employee Union       :  %d", sizeof(ue));

            return 0;

}

  
         Output:      Size of Employee Structure  : 26
    Size of Employee Union 	    : 20  

 2.	About Union

When a large number of variables are requested to use in a program. They were occupies a large amount of memory. Unions provide an easiest way to save
memory by using replacement technique. It uses same memory location for all type of variables.

A union is a data type in C, which allows the overlay of more than one variable in the same memory area.

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 165 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Characteristics of Unions: 
 1.	Union stores values of different types in a single location in memory.
  2.	A union may contain one of many different types of values but only one is stored at a time.
  3.	The union only holds a value for one data type. If a new assignment is made the previous value has no validity.
  4.	Any number of union members can be present. But union type variable takes the largest memory occupied by its members.

 3. Declaration of a Union

Union is a data type through which objects of different types and sizes can be stored at different times. Definition of a Union is same as a Structure. The
only change in the declaration is the substitution of the keyword union for the keyword struct. 
 

Eg: 
 union ddate
  {
     int day;
     int month;
     int year;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 166 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

};union student
  {
     int sno;
     char name[20];
     int marks;
     float avg;
};

  4. Defining a Union Variable

Defining a Union variable is the same as structure and that for defining a built-in data type such as int.	 
  

int a;  			/*  Valid */

union date d;		/* Valid in both C and C++  */

Calculation of Union size    

Every data type in C/C++ has a specified size, i.e int has 2 bytes of size, float has 4 bytes of size and so on. Here is the way to find the size of a Union
variable.
sizeof :- This function is used to find the size of a given variable.     	  
  

printf("%d", sizeof(int));		/* 2  */

printf("%d", sizeof(float));		/* 4  */

printf("%d", sizeof(union emp));   /* Displays the size of the emp union */

		

 5. Difference between Structures and Unions	

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 167 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Here is the difference between Structures and Unions	      
        

Structure
        

Union
             
        

1. It can hold different types    (variables) in a single location.        

1. It can hold different types    (variables) in different locations.            
        

2. It may contain more than one type    (variable) but only one is stored at a time.        

2. It may contain more than one type    (variable) all are stored in memory at a time.            
        

3. Any number of union members can be    present. But union type variable takes the largest memory occupied by its    member.         

3. It requires memory of the size of    all its members.            
        

4. On its process only one member can    be accessed at any given time.        

4. On its process all the members can    be access at any time.            
        

5. The scope of union is the function    and the scope of its members is also same as the union itself. (They can be    accessed directly in the program).        

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 168 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

5. The scope of Structure is the    function only. Structure members are unable to access directly in the    program.          

 6. Operations on Unions

A union is also similar to structure it can perform all the operations like structures. Operations on Union are listed below.	 
 ¢	A union variable can be assigned to another union variable.
  ¢	A union Variable can be passed to a function as a parameter
  ¢	The address of the union variable can be extracted by using the address-of operator (&).
  ¢	A function can accept and return a union or a pointer to a union. 
 

/* 82_union.c */

#include  <stdio.h>

union u_emp

{

      int eno;

      char name[20];

      float sal;

};

int main()

{

      union u_emp ue;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 169 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      printf("Enter Employee Number  : "); scanf("%d",  &ue.eno);

      printf("Enter Employee Name    : "); scanf("%s", ue.name);

      printf("Enter Employee Salary  : "); scanf("%f",  &ue.sal);

      printf("\n\nEmployee Details are as  follows...\n");

      printf("%d %s %f ", ue.eno,  ue.name, ue.sal);

      return 0;

}

 
 What is the output?
Only ue.sal is correct. What about rest of variables.

At any instant only one of the union variables will have a meaningful value. Only that member, who is last written, can be read. At this point, other
variables will contain garbage. It is the responsibility of the programmer to keep track of the active variable (i.e. variable which was last accessed).

Here is the best way to accept and display records of an employee. 
 

/* 83_emp.c */

#include  <stdio.h>

union u_emp

{

      int eno;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 170 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      char name[20];

      float sal;

};

int main()

{

      union u_emp ue;

      printf("\nEnter Employee Number  : "); scanf("%d",  &ue.eno);

      printf("\n%d", ue.eno);

      printf("\nEnter Employee Name  : "); scanf("%s", ue.name);

      printf("\n%s", ue.name);

      printf("\nEnter Employee Salary  : "); scanf("%f",  &ue.sal);

      printf("\n%f",ue.sal);

      return 0;

}

 7.	Scope of a Union

The scope of union is different than structure. A structure variable can be accessed by the its functions only. Where as a union and its members can be
accessed by its function. 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 171 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 /* 84_scope.c */
  #include <stdio.h>
  int main()
  {
       union
       {
            int i;
            char c;
            float f;
       };
       i = 10; c = ˜a(TM); f = 4.5; 			/* Union members */
       printf("The value of c is  : %c", c);
       return 0;
  }

12. Step-by-Step CorC++ --- C Programming - FilesFile Handling  

Introduction

Let(TM)s find the output of the following program. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 172 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Yes, it accepts a record of student information and displays it.
  Here is the same program, but included statements with a few modifications. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 173 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Above two programs are same, but the  second program contains a highlighted statement (FILE *fp = fopen(œstud.dat•, œa+•); ) and a few modifications
like ˜fprintf(TM), ˜fp(TM). Only few modifications included. These modifications affect  data to transfers from console to diskette in the file stud.dat. This
process is known as file control/file management/file organization.This is an easiest way to transfer the output from monitor to file using file control
statement.

 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 174 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Actually file processing involved with a lot of operations as well as methods to implement. Here is the actual process to handle files.

 File Handling	

Generally every program has to present the resulted values on the screen (1st program illustrates this). But those values are removed from the memory
whenever the program is terminated. If we want to keep records permanently, save them in a file. Every file has a few operations, here is a few; 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 175 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 176 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

File Operations  
    

fopen    

Opens the stream filename in the mode mode & if    succeeded, Returns a pointer to the newly open stream; or Null other wise.     
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 177 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Syntax     

FILE    *fopen(const char *filename, const char *mode);     
    

E.g.    

FILE *fp = fopen("stud.dat",    "r");   /*  Read from file  */
      FILE *fp = fopen("emp.dat", "w");  /*     Write to file  */
    FILE *fp = fopen("emp.dat", "a+");            /*     Read and Write on file */    
    

     

Mode:
      The mode string used in calls to fopen, is one of the    following values:                  

       Mode     Description              

r           Open    for reading only
            w         Create for writing (If a file by that name already exists,    it will be overwritten).
            a     Append; open for writing at end of file,    or create for
                                writing    if the file does not exist.
                    r+       Open an existing file for update (reading and writing)
                    w+       Create a new file for update (reading and writing).
        If a file by that name already exists,    it will be overwritten.
                    a+    Open for append; open for update at the    end of the file, or
                                create    if the file does not exist.      

To specify that a given file is being opened or created in    text mode,
                     append "t" to the string (rt,    w+t, etc.).
          
    To specify binary mode, append "b" to the string (wb,    a+b, etc.).    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 178 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    

fclose    

Closes the file pointed to by fp & returns 0 on    success, EOF is returned in case of error    
    

Syntax    

Int    fclose(FILE *fp);    
    

e.g.    

Fclose(fp);     fclose(stud);   fcloseall();    
    

fprintf    

Sends formatted output to a stream. Uses the same format    specifiers as printf, but sends output to the specified stream. Returns the    number of bytes
output or EOF in case of error.    
    

Syntax    

Fprintf(fptr,    œControl String•, list);    
    

E.g    

Fprintf(fp, œ%d %s %d %d %d•, sno,    name, sub1, sub2, sub3);
    fprintf(emp, œ%d %s %d•, eno, name, sal);    
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 179 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

fscanf     

This function is used to read a    formatted data from a specified file.    
    

Syntax:     

Fscanf(fptr,    œControl String•, list);    
    

E.g    

Fscanf(fp, œ%d %s %d %d %d•,    &sno, name, &sub1, &sub2, &sub3);
    fscanff(emp, œ%d %s %d•, &eno,    name, &sal);    
    

fwrite     

Fwrite appends a specified number of    equal-sized data items to an output file.    
    

Syntax:    

Size_t    fwrite(const void *ptr, size_t size, size_t n, FILE*stream);
            Argument  What It Is/Does
        Ptr       Pointer to any object; the data written    begins at ptr
        Size     Length of each item of data
        N          Number of data items to be appended
        stream   Specifies output file
         The total number of bytes written is     (n * size)    
    

fread    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 180 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Fread retrieves a specified number of    equal-sized data items from an input file.    
    

Syntax    

Size_t    fread(void *ptr, size_t size, size_t n, FILE*stream);
            Argument  What It Is/Does
              Ptr         Pointer to any object; the data written begins at ptr
        size     Length of each item of data
        n        Number of data items to be appended
        stream   Specifies output file
     The total number    of bytes written is (n * size)    
    

rewind     

Repositions file pointer to stream's    beginning    
    

Syntax     

Void    rewind(FILE *stream); 
      E.g.      fewind(fp);
      Rewind(stream) is equivalent to fseek(stream, 0L,    SEEK_SET)
    except that rewind clears the end-of-file and error    indicators, while fseek only clears the end-of-file indicator. After rewind,    the next operation on an
update file can be either input or output.    
    

fseek    

The file pointer for the stream is positioned at offset    number of bytes calculated from the position specified by whence. Offset may    be zero, negative, or
positive. The defined symbols SEEK_CUR, SEEK_SET &    SEEK_END are used as whence specifiers to indicate current position. BOF    & EOF
respectively. Returns 0 if successful or nonzero on failure.    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 181 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    

Syntax    

Int    fssek(FILE *stream, long offset, int whence);    
    

ftell     

Returns the current file pointer position on success or    Negative value on error.    
    

Syntax    

Long ftell(FILE    *stream);    
    

feof    

It is a macro to return nonzero if end-of-file has been    reached on the stream.    
    

Syntax    

Int    feof(FILE *stream);    
    

eof    

Checks whether the position marker in the file given by    its handle is at the end-of-file. If yes, returns 0, 1 is returned if    position marker is NOT at eof &
an error is indicated by setting of errno    & return value of -1.    
    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 182 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Syntax    

Int eof(int    handle);    
    

fgets /
             fputs    

The function fgets/fputs gets/puts a string(of size n    bytes) on the file pointed to by stream and returns end-of-file on error.    
    

Syntax    

Char    *fgets(char *s, int n, FILE *stream);    
    

fgetc/fputc
            Syntax    

Reads/writes a character from a stream.
            Int    fgetc/fputc(FILE *stream);     
    

fgetchar/
            fputchar    

These are equivalent to the above fgetc/fputc.  

Write a program to read a student data and store it in a data file. 
 

/* Program to  create a student data file */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 183 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* 85_write.c */

#include  <stdio.h>

#include  <ctype.h>

#include  <conio.h>

int main()

{

      int sno, sub1, sub2, sub3;

      char name[10],ch;

      FILE *fp = fopen("stud.dat",  "w");

      do{

            clrscr();

            printf("Enter Student  number        ");  scanf("%d", &sno);

            printf("Enter Student name          "); scanf("%s", name);

            printf("Enter 3 Subjects Marks      ");

            scanf("%d%d%d",  &sub1, &sub2, &sub3);

            fprintf(fp, "%d %s %d %d  %d\n", sno, name, sub1, sub2, sub3);

            printf("\n\nDo you want to  cont... (y/n)"); ch = getche();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 184 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      }while(toupper(ch) != 'N');

      fclose(fp);

      return 0;

}

Write a program to retrieve data from a student data file. 
 

/* Program to  retrieve data from a student data file */

/* 86_read.c */

#include  <stdio.h>

#include  <conio.h>

int main()

{

      int sno, sub1, sub2, sub3;

      char name[10];

      FILE *fp = fopen("stud.dat",  "a+");

      clrscr();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 185 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      printf("Student Records are as  follows....\n");

      do{

            fscanf(fp, "%d%s%d%d%d\n",  &sno, name, &sub1, &sub2, &sub3);

            printf("%5d%15s%3d%3d%3d\n",  sno, name, sub1, sub2, sub3);

      }while(!feof(fp));

      fclose(fp);

      return 0;

}

13. Step-by-Step C/C++ --- C++ Programming - OOPsOOP ( Object Oriented Programming ) in C++ 
 1.	Object Oriented Paradigm
  2.	Characteristics of Object-Oriented Language
            -	Objects
            -	Classes
            -	Data abstraction
            -	Data encapsulation
            -	Inheritance
            -	Polymorphism
            -	Dynamic binding
            -	Message passing
  3.	History of C++
  4.	Classes and Objects
  5.	Member functions defined outside the class
  6.	Array of Objects
  7.	Objects as Arguments

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 186 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  8.	Returning Objects from functions
  9.	Constructor
  10.	Destructors
  11.	Constructor Overloading
  12.	Static Class Data
  13.	Static Member Functions
  14.	Friend Functions

 1. Object Oriented Paradigm

The basic idea behind the Object Oriented Paradigm is to combine into a single unit of both data and the functions that operate on that data. Such a unit is
called an object.

Through this method we cannot access data directly. The data is hidden, so, is safe from 
  Accidental alteration. Data and its functions are said to be encapsulated into a single entity. Data encapsulation and data hidings are key terms in the
description of object-oriented language.

A C++ program typically consists of a number of objects, which communicate with each other by calling one another(TM)s member functions. The
organization of a C++ program is shown in this figure. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 187 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 2. Characteristics of Object-Oriented Language

Here are few major elements of Object-Oriented languages. 
 -	Objects
  -	Classes
  -	Data abstraction
  -	Data encapsulation
  -	Inheritance
  -	Polymorphism
  -	Dynamic binding
  -	Message passing 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 188 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 
Objects
Object is an instance of a class. Combining both data and member functions. Objects are the basic run-time entities in an object-oriented system.  
         
Classes
    A template or blueprint that defines the characteristics of an object and describes how the object should look and behave.     
         
Data Abstraction
    Identifying the distinguishing characteristics of a class or object without having to process all the information about the class or object. When you create
a class " for example, a set of table navigation buttons " you can use it as a single entity instead of keeping track of the individual components and how they
interact.    
         
Data Encapsulation
    An object-oriented programming term for the ability to contain and hide information about an object, such as internal data structures and code.
Encapsulation isolates the internal complexity of an object's operation from the rest of the application. For example, when you set the Caption property on a
command button, you don't need to know how the string is stored.    
         
Inheritance
      An object-oriented programming term. The ability of a subclass to take on the characteristics of the class it's based on. If the characteristics of the parent
class change, the subclass on which it is based inherits those characteristics.
    To inherit the qualities of base class to derived class.    
         
Polymorphism
    An object-oriented programming term. The ability to have methods with the same name, but different content, for related classes. The procedure to use is
determined at run time by the class of the object. For example, related objects might both have Draw methods. A procedure, passed such an object as a
parameter, can call the Draw method without needing to know what type of object the parameter is.    
         
Dynamic Binding
    Dynamic refers to the linking of a procedure call to the code to be executed in response to the call. Dynamic binding means that the code associated with
a given procedure call is not known until the time of the call at run-time.  It is associated with polymorphism and inheritance.  A function call associated
with a polymorphic reference depends on the dynamic type of that reference.    
         
Message Passing

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 189 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      An object-oriented program consists of a set of objects that communicate with each other. The process of programming in an object-oriented language
therefore involves the following basic steps:
           1.	Creating classes that define objects and their behavior.
           2.	Creating objects from class definitions.
         3.	Establishing communication among objects.  

 3. History of C++  
    Year    Language    Developed by     Remarks    
    1960    ALGOL    International    Committee    Too    general, Too abstract    
    1963    CPL    Cambridge University     Hard    to learn, Difficult to implement    
    1967    BCPL    Martin    Richards    Could    deal with only specific problems    
    1970    B    Ken    Thompson      AT    & T Bell Labs    Could    deal with only specific problems    
    1972    C    Dennis    Ritchie      AT    & T Bell Labs    Lost    generality of BCPL and B restored    
    Early    80(TM)s    C++    Bjarne    Stroustrup       AT    & T    Introduces    OOPs.  

C++ is an object-oriented programming language. Initially named ˜C with Classes(TM), C++ was developed by Bjarne Stroustrup at AT & T Bell
laboratories in Murry Hill, New Jersey, USA, in the early eighties. 

Stroustrup, an admirer of Simula67 (an OOP language) and a strong supporter of C, wanted to combine the best of both languages and create a more power
and elegance of C. The result was C++.

C++ is a truly Object Oriented Language, So. It must be a collection of classes and objects.

 4. Classes and Objects  

A class is a way to bind the data and its associated functions together. It allows the data to be hidden, if necessary, from external use. When defining a class,
we are creating a new abstract data type that can be treated like any other built-in data type. Generally, a class specification has two parts:     
 1.	Class declaration
  2.	Class function definition

The declaration specifies the type and scope of both data and member functions of class. Where as definition specifies the executable code of the function.

The general form of a class declaration is: 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 190 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

class class_name

{

     private:

          variable declarations;

          function declarations;

     public:

          variable declarations;

          function declarations;

};

The class declaration is similar to struct declaration. The key word class specifies that the data and functions be of private by default. Where as a struct key
word specifies that the data and functions be of public by default. The keywords private and public are known as visibility labels. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 191 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Here is an example class to implement an employee class. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 192 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

The  following is the complete program of emp class.   
 

// Program to accept and display employee  information

#include <iostream>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 193 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

using namespace std;

class emp                                             //  class definition

{

            private  :                                     // private data, functions

                        int  eno;

                        char  name[10];

                        float  sal;

            public  :                                      //  public data, functions

                        void  getdata()

                        {  cin >> eno >> name >> sal;   }

                        void  putdata()

                        {  cout << eno << name << sal;   }

};

int main()

{

            emp  e;

            e.getdata();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 194 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            e.putdata();

            return  0;

}

      

  5. Member functions defined outside the class

There is a possibility to define member functions outside of the class using scope resolution operator (::). 
 

// Program to accept and display employee  information

#include <iostream>

using namespace std;

class emp                                             //  class definition

{

            private  :                         // private data,  functions

                        int  eno;

                        char  name[10];

                        float  sal;

            public  :                                      //  public data, functions

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 195 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                        void  getdata();

                        void  putdata();

};

void emp::getdata()

{   cin  >> eno >> name >> sal;   }

void emp::putdata()

{   cout  << eno << name << sal; }

int main()

{

            emp  e;

            e.getdata();

            e.putdata();

            return  0;

}

 6. Array of Objects

C++ compiler also supports array of objects. 
Below example illustrates the advantage of Objects using arrays. 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 196 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

// Program to accept and display employee  information

#include <iostream>

using namespace std;

class emp                                             //  class definition

{

            private  :                         // private data,  functions

                        int  eno;

                        char  name[10];

                        float  sal;

            public  :                                      //  public data, functions

                        void  getdata()

                        {  cin << eno << name << sal;   }

                        void  putdata()

                        {  cout >> eno >> name >> sal;   }

};

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 197 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

            emp  e[10];                     // declaration  of array of objects

            for(i  = 0; i <10; i++)        // accessing  objects properties and methods

                       e[i].getdata();

           for(i = 0;  i< 10; i++)

                       e[i].putdata();

           return 0;

}

 7. Objects as Arguments

Passing Objects to functions is similar to passing structures, arrays to functions. The following program demonstrates how objects passed to functions. 
 

// Program to accept and display employee  information

#include <iostream>

using namespace std;

class emp                                             //  class definition

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 198 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            private  :                         // private data,  functions

                        int  eno;

                        char  name[10];

                        float  sal;

            public  :                                      //  public data, functions

                        void  getdata()

                        {  cin >> eno >> name >> sal;   }

                        void  putdata()

                        {  cout << eno << name << sal;   }

};

void operate(emp t);

int main()

{

           

            emp  e;

            operate(e);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 199 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

}

void operate(emp t)

{

            t.getdata();

            t.putdata();

            return  0;

}

 8. Returning Objects from functions

We saw objects being passed as arguments to functions, now we will discuss about how to return objects from functions. 
 

// Program to accept and display employee  information

#include <iostream>

using namespace std;

class emp                                             //  class definition

{

            private  :                         // private data,  functions

                        int  eno;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 200 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                        char  name[10];

                        float  sal;

            public  :                                      //  public data, functions

                        void  getdata()

                        {  cin >> eno >> name >> sal;   }

                        void  putdata()

                        {  cout << eno << name << sal;  }

};

emp get();

void put(emp t);

int main()

{

           

            emp  e;

            e =  get();

            put(e);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 201 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            return  0;

}

emp get()

{

            emp  t;

            t.getdata();

            return  t;

}

void put(emp t)

{

            t.putdata();

}

 9. Constructor

The following example shows two ways to give values to the data items in an object.  Sometimes, however, it(TM)s convenient if an object can initialize
itself when it(TM)s first created, without the need to make a separate call to a member function. 

Automatic initialization is carried out using a special member function called a constructor. A constructor is a member function that is executed
automatically whenever an object is created. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 202 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

// Program to accept and display employee  information using constructors

#include <string.h>

#include <iostream>

using namespace std;

class emp                               //  class definition

{

      private  :                         // private data,  functions

           int  eno;

           char  name[10];

           float  sal;

      public    :                        //  public data, functions

            emp()  { ; }                  //  constructor without arguments

            emp(int  teno, char tname[10], float tsal) // constructor with arguments

            {

                 eno  = teno;

                 strcpy(name,  tname);

                 sal  = tsal;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 203 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

             }

             void  getdata()

             {  cin >> eno >> name >> sal;   }

             void  putdata()

             {  cout << eno << name << sal << endl;  }

};

int main()

{

            emp  e1(1001, "Magic", 6700.45);

            emp  e2;

            e2.getdata();

            e1.putdata();

            e2.putdata();

            return  0;

}

The  above example program accepts values in two ways using constructors and using  member functions. An object, whenever it was declared it

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 204 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

automatically  initialized with the given values using constructors. Where as object e2  is accessible by its member function only.

One  more example to distinguish the use of constructor. 
 

//  Objects  represents a counter variable

#include <iostream>

using namespace std;

class counter

{

            private  :

            int count;                                 // variable count

            pubilc  :

                  counter()           { count = 0; }    //  constructor

                        void  inc_count() { count++; }    // increment count

                        int  get_count()   { return count; }  // return count

};

int main()

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 205 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            counter  c1, c2;                     //  define and initialize

            cout  << â€œ\nC1 = â€œ << c1.get_count();       //  display

            cout  << â€œ\nC2 = â€œ << c2.get_count();

            c1.inc_count();                            //  increment c1

            c2.inc_count();                            //  increment c2

            c2.inc_count();                            //  increment c2

            cout  << â€œ\nC1 = â€œ << c1.get_count();       //  display again

            cout  << â€œ\nC2 = â€œ << c2.get_count();

            return  0;

}

 
 A constructor has the following characteristics.
     -	Automatic initialization
     -	Return values were not accepted 
     -	Same name as the class
     -	Messing with the format

 10. Destructors

A destructor has the same name as the constructor (which is the same as the class name) but preceded by a tilde: 
 

// Demonstration of a destructor

#include <iostream>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 206 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

using namespace std;

class temp

{

            private  :

                        int  data;

            public  :

                        temp()  { data = 0;  }                    // Constructor (same name as class)

                        ~temp()  { }                                 //  destructor (same name with tilde)

}

int main()

{

            temp  t;

            return  0;

}

 11. Constructor Overloading

The ability to have functions with the same name, but different content, for related class. The procedure to use is determined at run time by the class of the

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 207 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

object. 
 

// Demonstration of a constructor overloading

#include <iostream>

using namespace std;

class ttime

{

       private  :

               int  hh, mm, ss;

       public  :

               ttime()  {hh = 0; mm = 0; ss = 0; } // Constructor  with initialization

               ttime(int  h, int m, int s)         //  Constructor with 3 arguments

               {

                    hh  = h; mm = m ; ss = s;

               }

               ttime(int  h, int m)               //  Constructor with 2 arguments

               {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 208 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                    hh  = h; mm = m; ss = 0;

               }

               ttime(int  h)                      //  Constructor with 1 argument

               {

                     hh  = h; mm = 0; ss = 0;

                }

                ~ttime()  { }

                void  get_time()

                {

                      cin  >> hh >> mm >> ss;

                }

                void  put_time()

                {

                      cout  << endl << hh << "   " << mm <<"   " <<  ss;

                }

};

int main()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 209 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

            ttime  t1, t2(12, 12, 12), t3(4, 5), t4(11);       //  Calling constructors

            t1.get_time();

            t1.put_time();

            t2.put_time();

            t3.put_time();

            t4.put_time();

            return  0;

}

 12. Static Class  Data

If  a data item in a class is defined as static, then only one such item is created for the entire class, no matter how many  objects there are.  A static data item
is  useful when all objects of the same class must share a common item of  information. A member variable defined as static has similar characteristics to a
normal static variable: It is visible only  within the class, but its lifetime is the entire program. 
 

// Demonstration of a static data

#include <iostream>

using namespace std;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 210 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

class temp

{

     private  :

         static  int count;         // Only  one data item for all objects

     public  :

         temp()  { count++; }       //  increment count when object created

         int  getcount() { return count; }        //  return count

};

int main()

{

     temp  t1, t2, t3;        //  create three objects

     cout  << â€œ\nCount is    â€œ <<  t1.getcount( ); // each object

     cout  << â€œ\nCount is    â€œ <<  t2.getcount( ); // sees the same

     cout  << â€œ\nCount is    â€œ <<  t3.getcount( ); // value of count

     return  0;

}

  
         

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 211 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Out  put of the above program is as follows: ( if it(TM)s still static )
      Count  is  3
      Count  is  3
      Count  is  3
      Out  put of the above program (if it(TM)s automatic)
      Count  is 1
      Count  is 1
    Count  is 1  

 13. Static Member Functions 

Like static  member variable, we can also have static member functions. A member function that is declared static has the following properties.  
 -	A static functions can have access to only other static members (functions or variables) declared in the same class.
  -	A static member function cab be called using the class name (instead of its objects) as follows:

  class-name :: function-name;

 
 

// Program to demonstrate static member function

#include <iostream>

using namespace std;

class test

{

     int  code ;

     static  int count;   // static member variable

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 212 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     public:

          void  setcode() { code = ++count; }

          void  showcode() { cout << "Object number :" << code <<  endl; }

          static  void showcount()                     //  static member function

          {

                cout  << "Count  :" <<  count << endl;

          }

};

int test :: count;

int main()

{

            test  t1, t2;

            t1.setcode();

            t2.setcode();

            test::showcount();  // accessing static function

            test  t3;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 213 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            t3.setcode();

            test::showcount();

            t1.showcode();

            t2.showcode();

            t3.showcode();

            return  0;

}

 14. Friend Functions 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 214 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Private  members cannot be accessed from outside the class. That is, a non-member  function can(TM)t have an access to the private data of a class.
However, there  could be a situation where we would like two classes to share a particular  function. It(TM)s simply achieved through Friend functions. 
 A friend function possesses certain special characteristics:            
        
- It is not in the scope of the class to  which it has been declared as friend.        
- Since it is not in the scope of the  class, it cannot be called using the object of the class. It can be invoked  like a normal function without the help of any
object.        
- Unlike member functions, it cannot  access the member names directly and has to use an object name and dot  membership operator with each member
name.        
- It can be declared either in the public  or the private part of a class without affecting its meaning.        
- Usually, it has the objects as  arguments.       
 

// Program to demonstrate friend function

#include <iostream>

using namespace std;

class test

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 215 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

      int  a;

      int  b;

      public:

            void  setvalue() { a = 25; b = 40; }

            friend  float sum(test s);             // FRIEND declared

};

float sum(test s)

{

     return  float (s.a + s.b ) / 2.0;        //  s.a & s.b are the private members

                                             //  of class test but they were accessible

                                             //  by friend function

}

int main()

{

      test  x;

      x.setvalue();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 216 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      cout  << "Mean value  = "  << sum(x) << endl;

      return  0;

}

One  more example to implement a friend  functions as a bridge between two classes.
  The  following program creates two objects of two classes and a function friendly to  two classes.
  In  this example friend function is capable of accessing both classes data members  and calculates the biggest of both class data members. 
 

#include <iostream>

using namespace std;

class second;

class first

{

      int  a;

      public:

         first(int  temp) { a = temp; }

         friend  void max(first, second);

};

class second

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 217 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

{

      int  b;

      public:

          second(int  temp) { b = temp; }

          friend  void max(first, second);

};

void max(first f, second s)

{

      if  ( f.a > s.b )                     //  both first, second data members can be

           cout  << â€œMax â€œ<<  f.a;          // accessed thru friend max  function

      else

           cout  << â€œMax â€œ<< s.b;

}

int main()

{

      first  f(20);

      second  s(30);

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 218 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      max(f,  s);

      return  0;

}

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

14. Step-by-Step C/C++ --- C++ Programming - InheritanceInheritance  
 Introduction 
  Derived class and Base class
  Specifying the Derived Class
  Derived Class Constructors
  Access Specifiers
            Public
            Private
            Protected
  Access Specifiers without Inheritance
  Protected Access Specifier
  Scope of Access Specifiers 
  Access Specifiers with Inheritance
  Types of Inheritance
            Single Inheritance
            Multiple Inheritances
            Multilevel Inheritance
            Hybrid Inheritance
            Hierarchy Inheritance

 Introduction

Inheritance is the most powerful feature of Object  Oriented programming. Inheritance is the process of creating new classes,  called derived classes from

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 219 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

existing or bases classes. The derived class  inherits all the capabilities of the base class but can add embellishments and  refinements of its own. 
  A  class, called the derived class, can inherit the features of another class,  called the base class.

To inherit the qualities of base class to derived  class is known as inheritance.  
  Its  noun is heritage. We know in our daily lives, we use the concept of classes  being derived into subclasses. For E.g. Vehicle is class it's again divided 
into Cycles, Bikes, Autos, trucks, busses and so on.

  Here Vehicle is known as Base class and the derived  items are known as derived classes or subclasses. 

Generally every base class has a list of  qualities and features. The main theme in this inheritance is to share all the  common characteristics of base class to
derived classes. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 220 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Inheritance has an important feature to allow  reusability. One result of reusability is the ease of distributing class libraries.  A programmer can use a class
created another  person or company, and, without modifying it, derive other classes from it that  are suited to particular situations.

 Derived class and Base class

A class, called the derived  class, can inherit the features of another class, called the base class.
  The derived class can add  other features of its own, so it becomes a specialized version of the base  class.  Inheritance provides a powerful  way to extend
the capabilities of existing classes, and to design programs  using hierarchical relationships.

Accessibility of base class members from derived  classes and from objects of derived classes is an important issue. Objects of  derived classes can access
data or functions in the base class that are  prefaced by the keyword protected from derived classes but not. Classes may be  publicly privately derived from
base classes.   Objects of a publicly derived class can access public members of the  base class, while objects of a privately derived class cannot.

Diagram shows how Derived class inherits. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 221 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A class can be derived from  more than one base class.  This is called  multiple inheritances.  A class can also  be contained within another class.

 Specifying the Derived Class

Class declaration is so easy using the keyword class as well as the derived class  declaration is also easy but the class must be ends with its base class id and
 access specifier.
  Syntax to declare a derived class:

Class <Class_name> : <Access_Specifier> <Base_Class_Name> ¦.

For. E.g. class result  : public stud; 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 222 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/*  program to accept and display a student  record  */

          #include  <iostream>
            using namespace std; 
  class add
  {
       private  :
              char  str[20];
              char  city[20];
              int  pin;
       public  :
              void  get_add()
              {
                   cout  << "Enter Address     street,city,pin";
                   cin  >> street >>city>>pin;
              }
              void  put_data()
              {
                    cout  << "Address is    "<< str 
                         <<endl<<city  <<endl<<pin;
              }
  };
  class stud  : public add
  {
        private  :
               int  sno;
               char  name[20];
               int  m1,m2,m3;
        public :
               void  get_data()
               {
                     cout  << "Enter Student No.  ";  cin >> sno;
                     cout  << "Enter Student Name   "; cin >> name;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 223 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                     cout  << "Enter Student 3subjects marks   ";
                     cin  >> m1 << m2 << m3;
               }
               void  put_data()
               {
                     cout  << "Student number  :" << sno;
                     cout <<  "Student name      :" << name;
                     cout <<  "Student marks     :" << m1 <<  "  "  <<m2<<"   "<<m3;
              }
  };
  int main()
  {
        stud s;
        s.get_add();
        s.get_data();
        s.put_add();
        s.put_data();
        return  0;
  }

Diagramed  explanation for the above program 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 224 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 Derived Class Constructors

If  a class is declared with its own constructors it is a base class of another.  The derived class is also having its own constructors.  If an object is declared
which is the  constructor will be executed?   No doubt  it executed the constructor of the derived class.  It you still want to execute the constructor  of Base
class or both Derived and Base class constructors simply call the Base  constructor in Derived class constructor. 
 

/*  Constructors in derived class */

#include  <iostream>

using namespace std;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 225 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

class  Add

{

     protected :                                // NOTE : not private

            unsigned int a;

     public :

            Add()   {  a = 0; }                  //  constructor , no args

            Add( int c ) { a = c; }             // constructor , one args

            int get_val(){     return a; }      // return A value

            Add operator ++ ()                  // increment count

            {

                 a++;                           // increment count,  return

                 return  Add(a);                 // an unnamed  temporary object

            }                                   // initialized to this  count

};

class  Sub : public Add

{

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 226 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      public:

           Sub() : Add() { }                     // Constructor, no args

           Sub(int c) : Add(c) { }               // Constructor, one args

           Sub operator -- ()                    // decrement value of A,  return

           {                                     // an unnamed temporary object

                a--;                             //initialized to  this Value

                return  Sub(a);

           }

};

int  main()

{

      Sub ob1;                                  // class Sub

      Sub ob2(100);

      cout << "\nOb1  =" << ob1.get_val();      // display

      cout << "\nOb2  =" << ob2.get_val();      // display

      ob1++; ob1++; ob1++;                      // increment ob1

      cout << "\nOb1  =" << ob1.get_val();      // display

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 227 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

      ob2--; ob2--;                             // decrement ob2

      cout << "\nOb2  =" << ob2.get_val();      // display

      Sub ob3=ob2--;                            //  create ob3 from ob2

      cout << "\nOb3  =" << ob3.get_val();      // display

      return 0;

}

 ACCESS  SPECIFIERS

Access specifiers are used to control, hide, secure the both data and  member functions.  Access specifiers  are  of 3 types  
- Public Access Specifier  
- Private Access Specifier   
- Protected Access Specifier.

Public : 
   If a member or data is a public it can be used by  any function with in class and its derived classes also.
  In C++  members of a struct  or union are public by default.
  Public Member of a class can be inherited to the  derived class when the class is inherited publicly but not the member  functions(privately).

Private : 
   Member functions and friend of the class in which it  is declared can only use it.
  Members of a class are private by  default.
  Private   member of a class doesn(TM)t be inherited to a derived class when the base  class is inherited publicly or privately. It there is need we have to
write  member function, which are returns, those values.

Protected : 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 228 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

   It is access as the same as for private in addition,  the member can be used by member functions and friends of classes derived from  the declared class but
not only in Objects of the derived type.
  The protected member of a class can be inherited to  the next derived class only. But not to the later classes.

 Access Specifiers without Inheritance 
 

 More About Protected Access Specifier

To  provide the functionality without modifying the class.  Protected can accessed by it self  and derived class-protected members only but in objects or the
subderived class  or the outside class.

Scope of Access Specifiers   
            Access        Specifier     Accessible from
Own class    Accessible from
derived class    Accessible from
Objects outside class    

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 229 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

    Public    Yes    Yes    Yes    
    Protected    Yes    Yes    No    
    Private    Yes    No    No  

 Access  specifiers with Inheritance 
 

Types of Inheritance 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 230 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 231 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 
 

/*

Program to demonstrate Multiple  Inheritance 

*/
#include <iostream>
        using namespace std;
		class M
        {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 232 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

       protected  :
              int  m;
       public  :
              void  getm()
              {
                    cout  << "nEnter M value  :";
                    cin  >> m;
              }
        };
		class N
        {
       protected  :
              int  n;
       public  :
              void  getn()
              {
                    cout  << "nEnter N value  :";
                    cin  >> n;
              }
        };
		class P : public N, public M
        {
       public  :
              void  disp()
              {
                    cout  << "n  M   =   " << m;
                    cout  << "n  N   =   " << n;
                    cout  << "n  M*N =  " << m*n;
              }
        };
		int main()
        {
        P  p;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 233 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

        p.getm();
        p.getn();
        p.disp();
        return  0;
      }

If  a base class is publicly inherited then the public members, member function can  be accessible to the member functions of the derived class and to the
Objects  also where as If a base class is inherited privately then the public member of  base class are inherited to the member functions of the derived class
only but  not to the objects. 
 

/*

 A  program to demonstrate Multilevel Inheritance 

*/
class student
        {
            int  rno;
        public:
            void  getrno()
            {
                 cout  << "Enter  Number :";
                 cin  >> rno;
            }
            void  showrno()
            {
                 cout  << "Student Number:" <<  rno;
            }
        };
		class test : public student
        {
            int  m1,m2;
        public  :
            void  getmarks()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 234 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            {
                  cout  << "Enter marks 1  :" ;  cin >> m1;
                  cout  << "Enter marks 2  :" ;  cin >> m2;
            }
            int  retm1()
            {
                  return  m1;
            }
            int  retm2()
            {
                  return  m2;
            }
        };
		class result : public test
        {
            int  tot;
        public:
            void  get()
            {
                  getrno();
                  getmarks();
            }
            void  showresult();
            void  show()
            {
                  showrno();
                  showresult();
            }
        };
		void result::showresult()
        {
        int  s1,s2;
        s1=retm1();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 235 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

        s2=retm2();
        tot=s1+s2;
        cout  << "nMarks  " <<  s1 << "  "<< s2;
        cout  << "nTotal marks  "  << tot;
        }
		int main()
        {
        result  a;
        a.get();
        a.show();
        return  0;
        } 
 

/*

 Program to demonstrate Hybrid Inheritance 

*/
  #include <iostream>
  using namespace std;
  class student
  {
            int  rno;
       public:
            void  getrno()
            {
                  cout  << "Enter  Number :";
                  cin  >> rno;
            }
            void  showrno()
            {
                  cout  << "nStudent Number   :" <<  rno;
            }
  };

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 236 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  class test : public student
  {
       protected  :
            int  m1,m2;
       public  :
            void  getmarks()
            {
                  cout  << "Enter marks 1  :" ;  cin >> m1;
                  cout  << "Enter marks 2  :" ;  cin >> m2;
            }
            void  showmarks()
            {
                  cout  << "nMarks  of 2  subjects "  <<  m1 << "  " << m2;
            }
  };
  class sports
  {
       protected  :
            int  score;
       public  :
            void  getscore()
            {
                  cout  << "Enter   Score  :";
                  cin  >> score;
            }
  };
  class result : public test, public sports
  {
       public  :
            void  getdata()
            {
                 getrno();
                 getmarks();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 237 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                 getscore();
            }
            void  putdata()
            {
                  showrno();
                  showmarks();
                  cout  << "nScore  is  " << score;
                  cout  << "n Total marks   "  << m1+m2;
            }
  };
  int main()
  {
        result  r;
        r.getdata();
        r.putdata();
        return  0;
  }

Pictorial representation of the above program: 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 238 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

In the above figure student class inherited to  result in two ways.  One is via test  another one is via sports then two sets of members, member functions of
common  base class student are inherited to the derived class result at the time of  execution the system will get confuse to use what set of member
functions of  base class.
  This can be avoided by making the common base class  as virtual base class.

Eg: 
 

class student {    };

class test : virtual public student {     };

class sports : virtual public student {     };

class result : public  test, sports  {    };

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

15. Step-by-Step C/C++ --- C++ Programming - Operator OverloadingOperator Overloading 
 1.	Introduction
  2.	Operator

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 239 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

            ¢	Rules of Operator Overloading
            ¢	Restrictions on Operator Overloading
  3.	Overloading Unary Operators
  4.	Overloading Binary Operators
  5.	Operator Overloading with Strings

 1. Introduction 
 

// Assign a variable to another

#include  <iostream>

using namespace std;

int  main()

{

    int a = 10, b;     

    b = a;               

//  valid

      cout << b;
      return 0;
 }  

// Assign an object to another

#include  <iostream>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 240 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

using namespace std;

class  emp

{

    public:

    int eno;

    float sal;

};

int  main()

{

    emp e1= { 1001, 2300.45 },e2 ;

    cout << endl << e1.eno  << e1.sal;

    e2 = e1;                            

// valid

      cout << endl << e2.eno  << e2.sal;
      return 0;
  }

Expressions are common in every language; an expression is a collection of operands and operators. Where as an operation is a collection of expressions.
The above two programs demonstrate how variables/objects were assigned together. 

Both programs are valid, they demonstrates the use of equalto ( = ) operator. 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 241 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 242 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Operator overloading is one of the most exciting feature of object-oriented programming. It is used to overcome the situation like the above illegal
structure operation. It can transform complex, obscure program listing into intuitively obvious ones.

Through Operator overloading we can see how the normal C++ operators can be given new meanings when applied to user-defined data types. The
keyword operator is used to overload an operator, and the resulting operator will adopt the meaning supplied by the programmer.

For example using object we can perform direct string assignment operation.  
 

//  Program to assign a string to other

#include  <string.h>

#include  <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 243 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

#include  <iostream>

using namespace std;

class  string

{

     char *str;

     public:

          string() { }

          string(char *s) { str =  s; }

          void putstring()

          {

               cout  << str;

          }

};

int  main()

{

     string s1("Computer");

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 244 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     string s2;

     s2 = s1;

     s2.putstring();

     return 0;

}

  

  2. Operator  

type operator operator-symbol ( parameter-list ) 

The operator keyword declares a function  specifying what operator-symbol means  when applied to instances of a class. This gives the operator more than
one  meaning, or "overloads" it. The compiler distinguishes between the  different meanings of an operator by examining the types of its operands. 

Rules of  Operator Overloading  
   
- You can overload the following operators:      
      +     -      *      /      %      ^       
      !      =      <      >      +=      -=       
      ^=      &=      |=      <<      >>      <<=       
      <=      >=      &&      ||      ++      --       
      ( )      [ ]      new      delete      &      |       
      ~      *=      /=      %=      >>=      ==       
      !=      ,      ->      ->*                  
   
- If an operator can be used as either a unary or a binary  operator, you can overload each use separately.
      
- You can overload an operator using either a non-static  member function or a global function that's a friend of a class. A global  function must have at least

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 245 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

one parameter that is of class type or a reference  to class type.
      
- If a unary operator is overloaded using a member function,  it takes no arguments. If it is overloaded using a global function, it takes  one argument.  

If a binary operator is overloaded using a  member function, it takes one argument. If it is overloaded using a global  function, it takes two arguments.  

Restrictions  on Operator Overloading  
   
- You cannot define new operators, such as **.
      
- You cannot change the precedence or grouping of an operator,  nor can you change the numbers of operands it accepts.
      
- You cannot redefine the meaning of an operator when applied  to built-in data types.
      
- Overloaded operators cannot take default arguments.
      
- You cannot overload any preprocessor symbol, nor can you  overload the following operators:      
         

.     

.*      

::      

?:      

The assignment operator has some additional  restrictions. It can be overloaded only as a non-static member function, not as  a friend function. It is the only
operator that cannot be inherited; a derived  class cannot use a base class's assignment operator. 

 3. Overloading Unary Operators

Let(TM)s start off by overloading a unary operator. Unary operators act on only one operand. (An operand is simply a variable acted on by an operator).

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 246 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Examples of unary operators are the increment and decrement operators ++ and --, and the unary minus.

  Example:
  The following example demonstrates the use of increment operator ++. 
 

#include  <iostream>

using namespace std;

class  counter

{

      private:

            unsigned int count;

      public:

            counter(){ count = 0; }

            int get_count()  { return count; }

            counter operator ++()

            {

                   count++;

                   counter  temp;

                   temp.count =  count;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 247 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

                   return temp;

            }

};

int  main()

{

      counter c1, c2;                            // c1 =  0,  c2 = 0

      cout << "\nC1 = "  << c1.get_count();       // display

      cout << "\nC2 = "  << c2.get_count();

      

++c1;

                                      // c1 = 1
        c2 = ++c1 ;                                // c1 = 2, c2 = 2
  
        cout << "nC1 = "  << c1.get_count();       // display  again
        cout << "nC2 = "  << c2++.get_count();     // c2 = 3
        return 0;
      }

One  more example to overloading unary minus. 
 

#include <iostream>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 248 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

using namespace std;

class subtract

{

          int a;

          int b;

     public:

          void getdata(int x, int y)

          {

               a = x; b = y;

          }

          void putdata()

          {

               cout<< endl << "A  = " << a <<"B = " << b;

          }

          void operator -()

          {

               a = -a;   	b = -b;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 249 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          }

};

int main()

{

     subtract s;

     s.getdata(34, -6);

     cout << endl << "S : ";

     s.putdata();

     -s;

     cout << endl << "S : ";

     s.putdata();

     return 0;

}

 4. Overloading Binary Operators

But  operators can be overloaded just as easily as unary operators.  We will look at examples that overload  arithmetic operators, comparison operators, and

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 250 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

arithmetic assignment  operators.

We  have just seen how to overload a unary operator. The same mechanism can be used  to overload a binary operator. 
 

// Overloading + operator

  #include <iostream>
  using namespace std; 
  class time 
  { 
          int hh; 	int mm; 	int ss; 
     public: 
          time( ) { }
          time(int h, int m, int s)
          {
               hh =h; mm = m; ss = s;
          }
          void disp_time()
          {
               cout << endl << hh<< " : "
               << mm << " : " << ss;
          }
          time operator+(time);
};

time time::operator+(time t)
{
     time temp;
     temp.hh = hh + t.hh;
     temp.mm = mm + t.mm;
     temp.ss = ss + t.ss;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 251 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return temp;
}

int main()
{
     time t1(12,1,24) , t2(5, 23, 45), t3;
     t3 = t1 + t2;
     t3.disp_time();
     return 0;
}

 5. Operator Overloading with Strings

C/C++  deals with strings quite differently; we never copy, concatenate, or compare  strings using operators like other languages. C/C++ has built functions
to  perform the above operations. But C++ provides the facility to do every thing  on strings using operators. That means we have to provide extra
responsibility  to operators to perform such things.

The  following example demonstrates the comparison between two strings using  comparison operator ==. 
 

// Program to compare two strings using operator overloading

  #include <string.h>
  #include <stdio.h>
  #include <iostream>
  using namespace std;

  enum boolean{ false, true };

  class string
  {
     char *str;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 252 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     public:
          string() { *str = NULL; }
          string(char *s) { str = s; }
          int operator ==(string ts)
          {
               if (strcmp(str, ts.str) >= 0)
                    return true;
               else
                    return false;
          }
};

int main()
{
     string s1("Computer");
     string s2("Computers");

     if(s1 == s2)
          cout << "Equal";
     else
          cout << "Not Equal";

     return 0;
} 
 

// concatenation of two strings

  #include <string.h>
  #include <stdio.h>

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 253 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  #include <iostream>
  using namespace std;

  class string
  {
          char *str;
     public:
          string() 
          { 
               str = new char[30] ;
               *str = NULL; 
          }
          string(char *s) { str = s; }
          string operator +(string ts)
          {
               string t;
               strcat(t.str, str);
               strcat(t.str, ts.str);
               return t;
          }
          void putstring()
          {
               cout << endl << str;
          }
};

int main() 
{ 
     string s1("Computer"); 	string s2("Institute"); 
     s1.putstring(); 	s2.putstring(); 
     string s3; 

     s3 = s1 + s2; 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 254 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     s3.putstring();
     return 0;
}

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

16. Step-by-Step C/C++ --- C++ Programming - PolymorphismPolymorphism 
 1.	Function Overloading
  2.	Polymorphism
  3.	Types of polymorphism
  4.	Normal member functions accessed with pointers
  5.	Virtual Function
  6.	Pure Function
  7.	Assignment and Copy-Initialization
  8.	The COPY Constructor
  9.	˜this(TM) Pointer

 1.	Function Overloading

If a function with its name differed by  arguments behavior is called functions polymorphism or function overloading. 
 

// An example program to demonstrate the use of function overloading

#include <iostream>
  using namespace std;
  void  printline()
  {
       for(int i=0;i<=80; i++) cout << "-";
  }
  
  void printline(int n)

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 255 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  {
       for(int i =0 ;i<=n;i++) cout << "-";
  }
  
  void printline(int n,char ch)
  {
       for(int i=0;i<=n; i++) cout << ch;
  }

   int main()
        {
             printline();
             printline(5);
             printline(10, ˜*(TM));
             return 0;
        }
      

 Polymorphism

Polymorphism is one of the crucial  features of OOP. It simply means one name, multiple forms.  We have already seen how the concept of  polymorphism
is implemented using overloaded functions and operators.  The overloaded member functions are selected  for invoking by matching arguments, both type
and number.  The compiler knows this information at the  compile time and therefore compiler is able to select the appropriate function  for a particular call
at the compile time itself.  This is called early binding or static  binding or static linking.  Also  known as compile time polymorphism, early binding 
simply means that an  object is bound to its functions call at compile time.

Now let us consider a situation where  the function name and prototype is the same in both the base and derived  classes.  For example, considers the 
following class definitions. 
 

#include <iostream>

using namespace std;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 256 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

class   A

{

     int x;

     public	: void show();

};

class   B : public A

{

     int y;

     public :  void show();

};

int main()

{

     B b;

     b.show();

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 257 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     return 0;

}

How do we use the member function show(  ) to print the values objects of both the classes A and B ?  Since the prototype of show( ) is the same in  the
both places,  the function is not  overloaded and therefore static binding does not apply.  In fact, the compiler does not know what to  do and defers the
decision.
              
  It would be nice if the appropriate  member function could be selected while the program is running.  This is known as runtime polymorphism.  How
could it happen? C++ supports a mechanism  known as virtual function to achieve  runtime polymorphism.  At runtime, when  it is known what class
objects are under consideration, the appropriate version  of the function is called.

Since the function is linked with a  particular class much later after the compilation, this process is termed as late  binding.  It is also known as dynamic 
binding or dynamic linking because the selection of the appropriate  function is done dynamically at runtime.

 3. Types of Polymorphism

Polymorphism is of two types namely. 
    1

	Compile time polymorphism
  Or Early binding
  Or Static binding
  Or Static linking polymorphism.      

An object is bound to its function call at compile time.
 
    2

Runtime polymorphism
  Or late binding
  Or Dynamic binding

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 258 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  Or Dynamic linking polymorphism.      

The selection and appropriate function is done dynamically at run time.
 
 

 

Dynamic binding is one of the powerful  features of C++. This requires the use of pointers to objects. We shall discuss  in detail how the object pointers and
virtual functions are used to implement  dynamic binding.

 4. Normal Member Functions Accessed with Pointers

The below program consist of a base class 
 

/*  

Normal

 functions accessed from pointer */

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 259 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  /* Polymorphism with classes (without using  VIRTUAL polymorphism */
  #include  <iostream>
  using namespace std;

  class  BASE
        {
       public :
            void disp() { cout  << "nYou are in BASE class "; }
        };

class  DERIVED1 : public BASE
        {
       public :
            void disp() { cout  << "nYou are in DERIVED1 class"; }
        };

		class  DERIVED2 : public BASE
        {
       public :
            void disp() { cout  << "nYou are in DERIVED2 class"; }
        };

int  main()
        {
        DERIVED1 d1;               // Object of derived class 1
        DERIVED2 d2;               // Object of derived class 2
        BASE *b;                      // pointer to base class
  
        b=&d1;                          // Assign address of d1 in pointer b
        b->disp();                      // call to disp()
              b=&d2;                          // Assign address of d2 pointer b
        b->disp();                      // call to disp()
        return 0;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 260 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

        }

The above program demonstrates: 
 ¢	A BASE class
  ¢	DERIVED1, DERIVED2 classes derived from BASE
  ¢	Derived classes objects (d1,d2)
  ¢	BASE class pointer *b  
         

Output      

You are in BASE class
    You are in BASE class  

 5. Virtual Function

Virtual means existing in effect but not in  reality. 
  A member function can be made as  virtual function by preceding the member function with the keyword virtual.  
 

/*  Polymorphism with Classes (Virtual  polymorphism)  */

  
#include <iostream>
        using namespace std;
        class B
        {
             public :
                  void show(){  cout << "nclass B method Show()  "; }
                  virtual void disp() { cout << "nclass B method disp()"; }
		};

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 261 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

		class D : public B
        {
             public :
                  void show(){cout << "nclass D method Show()  "; }
                  void disp(){ cout << "nclass D method disp()";  }
        };

		int main()
        {
             D d1;
             d1.show();
             d1.disp();    			// Base class member

		      B b;
             D d;
             B *Bptr;
             Bptr = &b;
             Bptr->show();
             Bptr->disp();  			//   Base class member

		      Bptr=&d;
             Bptr->show();			// derived class members
             Bptr->disp();			// Base class member
             return 0;
        }  
         

 Output      

class D method Show()
    class D method disp()  

 6. Pure Function

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 262 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

A  function defined in a base class and has no definition relative to derived  class is called pure function. In simple words a pure function is a virtual 
function with no body. 
 

#include <iostream>

using namespace std;

class B

{

     public :

          void show(){  cout << "\nclass B method Show()  "; }

          virtual void disp() = 0;  // pure virtual function

};

class D : public B

{

     public :

          void show(){cout << "\nclass D method Show()  "; }

          void disp(){ cout << "\nclass D method disp()";  }

};

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 263 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

int main()

{

     D d1;

     d1.show();	// O/P : Class D method show()

     d1.disp();    	// O/P : Class D method disp()

     D d;

     B *Bptr;

     Bptr=&d;

     Bptr->show();	// O/P : Class B method show()

     Bptr->disp();	// O/P : Class D method disp()

     return 0;

}

Bptr -> show()  is the default  executable function from Base 
    Bptr -> disp() is the default  executable function from Base but it is declared as a virtual pure function so  at runtime Derived class's disp() will be called. 
 

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 264 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

/* Program to demonstrate the advantage of pure virtual functions  */

#include <iostream>

using namespace std;

enum boolean { false, true };

class NAME

{

     protected :  char name[20];

     public  :

          void getname()

          {  cout << "Enter name   :"; cin >> name; }

          void showname()

          {  cout << "\nName is  "<< name; }

          boolean virtual isGradeA() = 0;  // pure virtual function

};

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 265 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

class student : public NAME

{

     private : float avg;

     public :

          void getavg()

          {

               cout << "\nEnter Student Average :";

               cin >> avg;

          }

          boolean isGradeA()

          { return (avg>=80) ? true : false ; }

};

class employee : public NAME

{

     private : int sal;

     public :

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 266 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          void getsal()

          { cout << "\nEnter salary  "; cin >> sal;  }

          boolean isGradeA()

          { return (sal>=10000) ? true : false ; }

};

int main()

{

     NAME *names[20];	// no of pointer to name

     student *s;		// pointer to student

     employee *e;		// pointer to employee

     int n = 0;		// no of Names on list

     char choice;

     do{

          cout << "Enter Student or Employee (s/e)  ";

          cin >> choice;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 267 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          if(choice=='s')

          {

               s = new student;	// make a new student

               s->getname();

               s->getavg();

               names[n++]=s;

          }

          else

          {

               e = new employee;	// make a new employee

               e->getname();

               e->getsal();

               names[n++]=e;

          }

          cout << "Enter another  (y/n)  ?";	// do another

          cin >> choice;

     } while(choice=='y');

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 268 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     for(int j=0; j<n; j++)

     {

          names[j]->showname( );

          if(names[j]->isGradeA( )==true)

               cout << "He is Grade 1 person";

     }

     return 0;

}

 7. Assignment and Copy-Initialization 

The  C++ compiler is always busy on your behalf, doing things you can(TM)t be bothered  to do. If you take charge, it will defer to your judgement;
otherwise it will  do things its own way. Two important examples of this process are the assignment operator and the copy  constructor.

You(TM)ve  used the assignment operator many times, probably without thinking too much  about it. Suppose a1 and a2 are objects. Unless you tell the 
compiler otherwise, the statement.

            a2  = a1;            // set a2 to the value of  a1

Will  cause the compiler to copy the data from a1, member-by-member, into a2. This  is the default action of the assignment operator, =.

You(TM)re  also familiar with initializing variables, initializing an object with another  object, as in

            alpha a2(a1);    // initialize a2 to the value of a1

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 269 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

Causes  a similar action. The compiler creates a new object, a2, and copies the data from a1, member-by-member, into a2. This  is the default action of the
copy constructor.

 Both these default activities are  provided, free of charge, by the compiler. If member-by-member copying is what  you want, you need take no further
action. However, if you want assignment of  initialization to do something more complex, then you can override the default  functions. We(TM)ll discuss
the techniques for overloading the assignment operator  and the copy constructor separately.

Overloading the Assignment Operator 
 

// Overloading the Assignment ( = ) Operator

#include <iostream>

using namespace std;

class alpha

{

     private:

          int data;

     public:

          alpha() { } 				// no-arg constructor

          alpha( int d )

          { data = d; }		// one-arg constructor

          void display()

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 270 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

          { cout << data; }    	// Display data

          alpha operator =(alpha & a)		// overloaded = operator

          {

               data = a.data;			// not done automatically

               cout << "\n Assignment operator invoked ";

               return alpha(data);

          }

};

int main()

{

     alpha a1(37);

     alpha a2;

     a2 = a1;					// Invoke overloaded =

     cout << "\n a2 = ";  a2.display(); 		// display a2

     alpha a3 = a2;					// does NOT invoke =

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 271 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

     cout << "\n a3 = "; a3.display();		// display a3

     return 0;

}

  
         

Output:      

a2 = 37
    a3 = 37  

 8. The COPY Constructor

As  we discussed, we can define and at the same time initialize an object to the  value of another object with two kinds of statement:

     alpha  a3(a2);                            // Copy  initializing
         alpha  a3 = a2;                          // copy  initialization, alternate syntax

Both  styles of definition invoke a copy  constructor: that is, a constructor that copies its argument into a new  object. The default copy constructor, Which
is provided automatically by the  compiler for every object, performs a member-by-member copy. This is similar to  what the assignment operator does; the
difference is that the copy constructor  also creates also creates a new object.

The  following example demonstrates the copy constructor. 
 

#include <iostream>

using namespace std;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 272 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

class alpha

{

     private :

          int data;

     public:

          alpha( )	{ } 			// no-args constructor

          alpha(int d) { data = d; } 	// one-arg constructor

          alpha(alpha& a)		// copy constructor

          {

               data = a.data;

               cout << "\nCopy constructor invoked";

          }

          void display( )

          {  cout << data; }

          void operator = (alpha& a)  	// overloaded = operator

          {

               data = a.data;

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 273 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

               cout << "\nAssignment operator invoked";

          }

};

int main()

{

     alpha a1( 37 );

     alpha a2;

     a2 = a1;				// invoke overloaded =

     cout << "\na2 = "; a2.display();		// display a2

     

alpha a3( a1 );				// invoke copy constructor

		 
             // 	alpha a3 = a1;  				// equivalent definition of a3
        
             cout << "na3 = "; a3.display();		// display a3
             return 0;
        }

The  above program overloads both the assignment operator and the copy  constructor.  

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 274 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

  The  overloaded assignment operator is similar to that in the past example.  

  9. ˜this(TM) Pointer 

C++  uses a unique keyword called this to  represent an object that invokes a member functions. This is a pointer that points to the object for which this 
function  was called. 

This  pointers simply performs make task to  return object it self.

The  following program defines i, j objects  and i is assigned with the value of  5 and the entire object of i is  assigned by its member function to j 
 

#include <iostream>

using namespace std;

class A

{

     int a;

     public:

          A() { }

          A(int x)

          {  a = x; }

          void display()

          {

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 275 of 276



Learning C/C++ Step-By-Step http://www.howtoforge.com/

               cout << a;

          }

          A get()

          {

              

 return *this;

		// Return it self 
  
            }
  };
  int main()
  {
       A i(5);
       A j;

        j = i.get();
             j.display();
             return 0;
        }

Ref: Object-oriented Programming in Turbo C++: Robert Lafore

Copyright © 2009  All Rights Reserved.

 HowtoForge Page 276 of 276


