Linux Format http://www.linuxformat.co.uk/print.php?sid=748

1surb

The LXF Guide: Write a Perl module

Articles / LXF magazine
Posted by M-Saunders on Oct 08, 2008 - 12:16 PM

Looking to make your Perl code more re-usable and easier to maintain? Juliet Kemp explains
how to create, build and install your own Perl modules, and it's not as difficult as you might
think...

A Perl module is a self-contained piece of Perl code that can be used by other modules or Perl
programs. It has a unique name - Perl has a hierarchical namespace for modules to reduce
collisions, so there are modules like Math::Complex, Net::SMTP, and so on. You can check out
CPAN, the Comprehensive Perl Archive Network [1] for a list of all available modules and to
get an idea of the namespace structure. Modules all end with a . pm extension.

The major adv antage of modules is that they make your code more reusable. It's not much more
work to create a module than it is just to hack together a one-time script, and you'll sav e yourself
significant work in the future if the problem you're solving is ever likely to crop up again. Modules
are also more maintainable, which is another way of helping out your future self!

Creating a module

Setting up the module

Start off by creating a dev elopment directory for your perl module. cd into this directory, then
use the h2xs tool. This creates a structure for a Perl module from a C library .h file; but it's
become the standard tool even if you're not starting from a .h file. For now, let's just set up a
test module to demonstrate the principles.

h2xs -X -n Acme::Test

This creates and populates an Acme-Test directory (the -X switch says that it's not related to any
C code, and -n specifies the module name).

Take a look at the contents of this new directory. The MANIFEST file lists all the files in the
module - mostly to ensure that modules are receiv ed intact. README gives you a README
skeleton - filling this in is optional but good practice. t/Acme-Test.t is a test directory and a
skeleton test routine. Makefile.pl is a perl program to handle building the module, and 1ib/Acme
/Test.pmis the actual perl module, again with some skeleton code and documentation.

To build the module, there are 4 steps:

perl Makefile.pl
make

make test

make install

26.12.2008 22:29

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

2sur5

The make install line installs your module centrally on the system (you'll usually need root access
for this), so don't do this until you're sure it works!

Documenting your module

Ideally, you should document your module before you write it - because you should know what it's
going to do! perldoc, which uses the pod format, is excellent for documentation ease-of -use:
your skeleton module will include some skeleton documentation code for you to fill in. perldoc
perlpod will give you more information about POD.

The one critical documentation section that you need to create yourself is FUNCTIONS or
METHODS (if your code is function-based or object-oriented). Here, you should document ev ery
method/function intended for public use - at the least, state what parameters the method takes
and what return values it gives back. The aim is for someone to be able to use the module purely
by looking at the documentation, rather than needing to examine the code.

To read the documentation after install, type perldoc Acme::Test.

26.12.2008 22:29

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

Eile Edit Vew Jerminal Tabs Help

jkemp@astropcOl ~ § h2xs X -n Acme::Test

Defaulting to backwards compatibility with perl 5.8.8

1f you imtend this module to be compatible with earlier perl wersions, please
specify a mmimum parl warsion with the -b option.

Acme-Test/Lib/acme Test.pm

Acme-Test Makefile. PL

Acme- Test /README

Acme-Test/t/Acme-Test .t

Acma- Test/Changes

Acme- Test/MANIFEST
jkemp@astropctl ~ & cd Acme-Test/
Shome/ Jkemp/acme- Test
jkempBastropc0l -~/ Acme- % vim Libsacma /Test.pm
)kemp@astropcOl -/ Acme- % vim tfAcme-Test.t
JkempBastropc0l -/ Acme- % perl Makefile.PL
Checking if your kit is complete. ..

for Acme::Test
jkemp@astropcOl ~/Acme-Tast § make
cp Lib/acme/Test.pm blib/libs/Acme/Test.pm
sutoSplitting blibslab/acme/Test.pm (blib/lib/auto/Acme /Test)
Man1fying blib/mans/acme: :Test. 3pm
JkempBastropc0l ~/Acme-Test % make test
PERL_DL_MNONLAZY=1 /jusr/bim/perl *-MExtUtils::Command::MM* *.e" "test_harness(0,
'blib/lib', 'blibsarch')" t/*.t
t/Acme-Test ., ..ok
ALl tests successful.
Files=1, Tests=4, 0O wallclock secs (0.03 cusr + 0,00 csys = ©.03 CPU)
jkemp@astropcOl ~/Acme-Test § []

Creating and making the module (click for bigger)

[2]

Writing your module

When you come to actually write your code, you'll notice that there's a bunch of stuff already
there. This includes use strict, and some statements about AutoLoader and Exporter that
enable modules to be used from other pieces of code. Your documentation is right at the end of
the file.

Rather than get into the murky world of object-oriented code, let's stick with a functional module.
This means we don't need a new method, so we can just write a single method that works.

Preloaded methods go here.
sub test($) {

my $string = $ [0O];
return "String is $string\n";

3 sur 5 26.12.2008 22:29

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

4 sur 5

}

Now you've got a module with one method, so it's time to test it.

Testing your module

Have a look at the t/Acme-Test.t file. We're going to set up 4 tests, so change the line
use Test::More test => 1;

to

use Test::More tests => 4

We'll first add a couple of tests to check that the module loads OK:

This first line will already be in the file
BEGIN { use ok('Acme::Test') };
require ok('Acme::Test');

These check that you can use and require the module OK. Now let's test the method output:
first that there is any output at all, and then that it is what we expect.

my $result = Acme::Test::test("testing!");

ok((defined($result)), "Result is defined and is $result");

ok(($result eq "String is testing!\n"), "Result is as expected and is
$result");

To run the test, go to the top of your module directory and type perl Makefile.PL; make; make
test. If everything goes OK, you'll just be told that everything passed. If a test failed, then the
string after the comma in ok (test, output); will be used to identify the failed test. In this
case, I've put the $result value in this identification string to make it easier to find out what the
problem is if something does go wrong.

Installing and using your module

Finally, you need to install your module somewhere where the Perl interpreter will look for it. To
find out the contents of ;@INC, type perl -v. Your modules want to be installed under the
appropriate sub-directory in the site perl directory - on my system this is /usr/local
/1lib/site perl, so | would install the Math::Complex module in /usr/local/lib/site perl
/Math/Complex.pm.

make install will do this for you, but it may not install it where you want. To specify an install
directory, type

perl Makefile.PL INSTALL BASE=/install/dir
make install

If this is somewhere that isn't in ;@QINC, you'll need to set the PERL5LIB v ariable to include
/install/dir.

To use your module in another piece of code, you'll need something a bit like this:

use Acme::Test;

26.12.2008 22:29

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

5sur5

my $newacme = new Acme::Test;
print $newacme->test("hello world");

CPAN

One final note: if you want to share your module with other people (probably not worth it in the
case of this test module!) you can upload it to CPAN [3], the Comprehensive Perl Archive
Network. Check the FAQ for upload instructions. You can also of course download other people's
modules - there is an absolutely enormous amount of stuff available on CPAN, and it's well
worth checking out - although be warned that since absolutely anyone can upload, it's not
guaranteed to be any good!

This article is from Linux Format
http://www.linuxf ormat.co.uk/

The URL for this story is:
http://www.linuxf ormat.co.uk/modules.php?op=modload&name=News&file=article&sid=748

Links in this article
[1] http://www.cpan.org
[2] http:/Ninuxformat.co.uk/blog/wp-content/perimodules.png
[3] http://www.cpan.org

26.12.2008 22:29

