
The LXF Guide: Write a Perl m odule

Articles / LXF magazine
Posted by M-Saunders on Oct 08, 2008 - 12:16 PM

Looking to make your Perl code more re-usable and easier to maintain? Juliet Kemp explains
how to create, build and install your own Perl modules, and it's not as dif f icult as you might
think...

A Perl module is a self -contained piece of Perl code that can be used by other modules or Perl
programs. It has a unique name - Perl has a hierarchical namespace f or modules to reduce
collisions, so there are modules like Math::Complex, Net::SMTP, and so on. You can check out
CPAN, the Comprehensive Perl Archive Network [1] f or a list of all av ailable modules and to
get an idea of the namespace structure. Modules all end with a .pm extension.

The major adv antage of modules is that they make your code more reusable. It's not much more
work to create a module than it is just to hack together a one-time script, and you'll sav e yourself
signif icant work in the f uture if the problem you're solv ing is ev er likely to crop up again. Modules
are also more maintainable, which is another way of helping out your f uture self !

Creating a module

Setting up the m odule

Start of f by creating a dev elopment directory f or your perl module. cd into this directory, then
use the h2xs tool. This creates a structure f or a Perl module f rom a C library .h f ile; but it's
become the standard tool ev en if you're not starting f rom a .h f ile. For now, let's just set up a
test module to demonstrate the principles.

h2xs -X -n Acme::Test

This creates and populates an Acme-Test directory (the -X switch says that it's not related to any
C code, and -n specif ies the module name).

Take a look at the contents of this new directory. The MANIFEST f ile lists all the f iles in the
module - mostly to ensure that modules are receiv ed intact. README giv es you a README
skeleton - f illing this in is optional but good practice. t/Acme-Test.t is a test directory and a
skeleton test routine. Makefile.pl is a perl program to handle building the module, and lib/Acme
/Test.pm is the actual perl module, again with some skeleton code and documentation.

To build the module, there are 4 steps:

perl Makefile.pl
make
make test
make install

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

1 sur 5 26.12.2008 22:29

The make install line installs your module centrally on the system (you'll usually need root access
f or this), so don't do this until you're sure it works!

Docum enting your m odule

Ideally, you should document your module bef ore you write it - because you should know what it's
going to do! perldoc, which uses the pod f ormat, is excellent f or documentation ease-of -use:
your skeleton module will include some skeleton documentation code f or you to f ill in. perldoc
perlpod will giv e you more inf ormation about POD.

The one critical documentation section that you need to create yourself is FUNCTIONS or
METHODS (if your code is f unction-based or object-oriented). Here, you should document ev ery
method/f unction intended f or public use - at the least, state what parameters the method takes
and what return v alues it giv es back. The aim is f or someone to be able to use the module purely
by looking at the documentation, rather than needing to examine the code.

To read the documentation af ter install, type perldoc Acme::Test.

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

2 sur 5 26.12.2008 22:29

 [2]
Creating and making the module (click f or bigger)

Writing your m odule

When you come to actually write your code, you'll notice that there's a bunch of stuf f already
there. This includes use strict, and some statements about AutoLoader and Exporter that
enable modules to be used f rom other pieces of code. Your documentation is right at the end of
the f ile.

Rather than get into the murky world of object-oriented code, let's stick with a f unctional module.
This means we don't need a new method, so we can just write a single method that works.

Preloaded methods go here.

sub test($) {
 my $string = $_[0];
 return "String is $string\n";

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

3 sur 5 26.12.2008 22:29

}

Now you'v e got a module with one method, so it's time to test it.

Testing your m odule

Hav e a look at the t/Acme-Test.t f ile. We're going to set up 4 tests, so change the line

use Test::More test => 1;

to

use Test::More tests => 4

We'll f irst add a couple of tests to check that the module loads OK:

This first line will already be in the file
BEGIN { use_ok('Acme::Test') };
require_ok('Acme::Test');

These check that you can use and require the module OK. Now let's test the method output:
f irst that there is any output at all, and then that it is what we expect.

my $result = Acme::Test::test("testing!");
ok((defined($result)), "Result is defined and is $result");
ok(($result eq "String is testing!\n"), "Result is as expected and is
$result");

To run the test, go to the top of your module directory and type perl Makefile.PL; make; make
test. If ev erything goes OK, you'll just be told that ev erything passed. If a test f ailed, then the
string af ter the comma in ok (test, output); will be used to identif y the f ailed test. In this
case, I'v e put the $result v alue in this identif ication string to make it easier to f ind out what the
problem is if something does go wrong.

Installing and using your module

Finally, you need to install your module somewhere where the Perl interpreter will look f or it. To
f ind out the contents of ;@INC, type perl -v. Your modules want to be installed under the
appropriate sub-directory in the site_perl directory - on my system this is /usr/local
/lib/site_perl, so I would install the Math::Complex module in /usr/local/lib/site_perl
/Math/Complex.pm.

make install will do this f or you, but it may not install it where you want. To specif y an install
directory, type

perl Makefile.PL INSTALL_BASE=/install/dir
make install

If this is somewhere that isn't in ;@INC, you'll need to set the PERL5LIB v ariable to include
/install/dir.

To use your module in another piece of code, you'll need something a bit like this:

use Acme::Test;

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

4 sur 5 26.12.2008 22:29

my $newacme = new Acme::Test;
print $newacme->test("hello world");

CPAN

One f inal note: if you want to share your module with other people (probably not worth it in the
case of this test module!) you can upload it to CPAN [3], the Comprehensiv e Perl Archiv e
Network. Check the FAQ f or upload instructions. You can also of course download other people's
modules - there is an absolutely enormous amount of stuf f av ailable on CPAN, and it's well
worth checking out - although be warned that since absolutely anyone can upload, it's not
guaranteed to be any good!

This article is from Linux Format
 http://www.linuxf ormat.co.uk/

The URL for this story is:
 http://www.linuxf ormat.co.uk/modules.php?op=modload&name=News&f ile=article&sid=748

Links in this article
 [1] http://www.cpan.org
 [2] http://linuxf ormat.co.uk/blog/wp-content/perlmodules.png
 [3] http://www.cpan.org

Linux Format http://www.linuxformat.co.uk/print.php?sid=748

5 sur 5 26.12.2008 22:29

